Noncommutative Integration and Symmetry Algebra of the Dirac Equation on the Lie Groups / A. I. Breev, E. A. Mosman
Уровень набора: Russian Physics Journal = 1965-Язык: английский.Резюме или реферат: The algebra of first-order symmetry operators of the Dirac equation on four-dimensional Lie groups with right-invariant metric is investigated. It is shown that the algebra of symmetry operators is in general not a Lie algebra. Noncommutative reduction mediated by spin symmetry operators is investigated. For the Dirac equation on the Lie group SO(2,1) a parametric family of particular solutions obtained by the method of noncommutative integration over a subalgebra containing a spin symmetry operator is constructed..Примечания о наличии в документе библиографии/указателя: [References: 20 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | уравнение Дирака | некоммуникативное интегрирование | симметрические алгебры Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: 20 tit.]
The algebra of first-order symmetry operators of the Dirac equation on four-dimensional Lie groups with right-invariant metric is investigated. It is shown that the algebra of symmetry operators is in general not a Lie algebra. Noncommutative reduction mediated by spin symmetry operators is investigated. For the Dirac equation on the Lie group SO(2,1) a parametric family of particular solutions obtained by the method of noncommutative integration over a subalgebra containing a spin symmetry operator is constructed.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.