Combined action of crack closure and residual stress under periodic overloads: A fractographic analysis / S. Ramasubbu [et al.]
Уровень набора: International Journal of Fatigue, Scientific Journal = 1979-Язык: английский.Страна: .Резюме или реферат: The close relationship between sequence-sensitive near-tip residual stress and threshold stress intensity raises questions about load interaction models currently in use to estimate fatigue crack growth under variable amplitude loading. In an attempt to address them, experiments were performed on an Al–Cu alloy under specially designed load sequences with periodic overloads. Fractographic evidence from these tests confirms that fatigue crack closure, together with sequence sensitive variation in threshold stress intensity appear to explain all observed results. The fractographic data provide quantitative inputs for improved modeling of variable-amplitude fatigue, particularly at near-threshold crack growth rates. This study appears to suggest that conventional approaches based on the Wheeler and Willenborg residual stress models can provide reasonable estimates only by coincidence. They model the wrong parameter at lower fatigue crack growth rates and may simply not be valid at other growth rates..Примечания о наличии в документе библиографии/указателя: [References: p. 674-675 (18 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | near threshold fatigue | near-tip residual stress | crack closure | variable-amplitude loading | усталость | остаточные напряжения | трещины | закрытие | амплитуда | нагружение Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: p. 674-675 (18 tit.)]
The close relationship between sequence-sensitive near-tip residual stress and threshold stress intensity raises questions about load interaction models currently in use to estimate fatigue crack growth under variable amplitude loading. In an attempt to address them, experiments were performed on an Al–Cu alloy under specially designed load sequences with periodic overloads. Fractographic evidence from these tests confirms that fatigue crack closure, together with sequence sensitive variation in threshold stress intensity appear to explain all observed results. The fractographic data provide quantitative inputs for improved modeling of variable-amplitude fatigue, particularly at near-threshold crack growth rates. This study appears to suggest that conventional approaches based on the Wheeler and Willenborg residual stress models can provide reasonable estimates only by coincidence. They model the wrong parameter at lower fatigue crack growth rates and may simply not be valid at other growth rates.
Для данного заглавия нет комментариев.