Parameters assessment of the inductively-coupled circuit for wireless power transfer / Yu. N. Isaev [et al.]
Уровень набора: (RuTPU)RU\TPU\network\2008, IOP Conference Series: Materials Science and EngineeringЯзык: английский.Серия: Numerical simulation of applied problemsРезюме или реферат: In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters..Примечания о наличии в документе библиографии/указателя: [References: 12 tit.].Тематика: электронный ресурс | труды учёных ТПУ | параметры | беспроводная передача | мощность | индуктивно связанные катушки | COMSOL | электромагнитная энергия | метод конечных элементов Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
[References: 12 tit.]
In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.
Для данного заглавия нет комментариев.