The JKR-adhesive normal contact problem of axisymmetric rigid punches with a flat annular shape or concave profiles / E. Willert, Q. Li, V. L. Popov
Уровень набора: Facta Universitatis. Series: Mechanical Engineering = 1994-Язык: английский.Резюме или реферат: The JKR-adhesive frictionless normal contact problem is solved for the flat annular and the conical or spherical concave rigid punch indenting an elastic half space. The adhesive solution can be derived analytically from the non-adhesive one, the latter one being calculated by the boundary element method. It is found that the annular flat punch will always start to detach at the outer boundary. The pull-off forces for both concave punch shapes almost do not depend on the pull-off boundary regime and can be significantly larger than the pull-off force for the cylindrical flat punch..Примечания о наличии в документе библиографии/указателя: [References: p. 292 (17 tit.)].Тематика: труды учёных ТПУ | электронный ресурс | контактная механика | осевая симметрия | контактные зоны | адгезия | метод граничных элементов | Contact Mechanics | Axis-symmetry | Annular Contact Area | Adhesion | JKR-theory | Boundary Element Method | Concave Rigid Punch | Flat Annular Punch Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 292 (17 tit.)]
The JKR-adhesive frictionless normal contact problem is solved for the flat annular and the conical or spherical concave rigid punch indenting an elastic half space. The adhesive solution can be derived analytically from the non-adhesive one, the latter one being calculated by the boundary element method. It is found that the annular flat punch will always start to detach at the outer boundary. The pull-off forces for both concave punch shapes almost do not depend on the pull-off boundary regime and can be significantly larger than the pull-off force for the cylindrical flat punch.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.