On automatic tuning of basis functions in Bezier method / V. I. Reizlin (Reyzlin) [et al.]

Уровень набора: (RuTPU)RU\TPU\network\3526, Journal of Physics: Conference SeriesАльтернативный автор-лицо: Reizlin (Reyzlin), V. I., Specialist in the field of automatic control, Associate Professor of Tomsk Polytechnic University, Candidate of physico-mathematical sciences, 1948-, Valery Izrailevich;Demin, A. Yu., specialist in the field of Informatics and computer engineering, Associate Professor of Tomsk Polytechnic University, candidate of technical sciences, 1973-, Anton Yurievich;Rybushkina, S. V., linguist, Leading expert of Tomsk Polytechnic University, Lecturer, 1978-, Svetlana Vladimirovna;Sultanguzin, M. F.Коллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК), Кафедра иностранных языков института кибернетики (ИЯИК);Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК)Язык: английский.Резюме или реферат: A transition from the fixed basis in Bezier's method to some class of base functions is proposed. A parameter vector of a basis function is introduced as additional information. This achieves a more universal form of presentation and analytical description of geometric objects as compared to the non-uniform rational B-splines (NURBS). This enables control of basis function parameters including control points, their weights and node vectors. This approach can be useful at the final stage of constructing and especially local modification of compound curves and surfaces with required differential and shape properties; it also simplifies solution of geometric problems. In particular, a simple elimination of discontinuities along local spline curves due to automatic tuning of basis functions is demonstrated..Примечания о наличии в документе библиографии/указателя: [References: 16 tit.].Тематика: электронный ресурс | труды учёных ТПУ | автоматическая настройка | базисные функции | геометрические объекты | сплайны | кривые Безье Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 16 tit.]

A transition from the fixed basis in Bezier's method to some class of base functions is proposed. A parameter vector of a basis function is introduced as additional information. This achieves a more universal form of presentation and analytical description of geometric objects as compared to the non-uniform rational B-splines (NURBS). This enables control of basis function parameters including control points, their weights and node vectors. This approach can be useful at the final stage of constructing and especially local modification of compound curves and surfaces with required differential and shape properties; it also simplifies solution of geometric problems. In particular, a simple elimination of discontinuities along local spline curves due to automatic tuning of basis functions is demonstrated.

Для данного заглавия нет комментариев.

оставить комментарий.