Reduction of friction by normal oscillations. I. Influence of contact stiffness / M. Popov, V. L. Popov, N. V. Popov

Уровень набора: Friction, Scientific JournalОсновной Автор-лицо: Popov, M., physicist, assistant at Tomsk Polytechnic University, 1987-, MikhailАльтернативный автор-лицо: Popov, V. L., physicist, leading researcher of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1959-, Valentin Leonidovich;Popov, N. V., Nikita ValentinovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт физики высоких технологий (ИФВТ), Кафедра физики высоких технологий в машиностроении (ФВТМ)Язык: английский.Страна: .Резюме или реферат: The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is lost during a part of the oscillation period, so that the sample starts to “jump”. It is shown that the macroscopic coefficient of friction is a function of only two dimensionless parameters—a dimensionless sliding velocity and dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we consider “stiff systems”, where the contact stiffness is small compared with the stiffness of the system. The role of the system stiffness will be studied in more detail in a separate paper..Примечания о наличии в документе библиографии/указателя: [References: p. 53-54 (32 tit.)].Тематика: труды учёных ТПУ | электронный ресурс | трение скольжения | колебания | контактная жесткость | коэффициент трения | трение | sliding friction | out-of-plane oscillation | contact stiffness | coefficient of friction | active control of friction Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: p. 53-54 (32 tit.)]

The present paper is devoted to a theoretical analysis of sliding friction under the influence of oscillations perpendicular to the sliding plane. In contrast to previous works we analyze the influence of the stiffness of the tribological contact in detail and also consider the case of large oscillation amplitudes at which the contact is lost during a part of the oscillation period, so that the sample starts to “jump”. It is shown that the macroscopic coefficient of friction is a function of only two dimensionless parameters—a dimensionless sliding velocity and dimensionless oscillation amplitude. This function in turn depends on the shape of the contacting bodies. In the present paper, analysis is carried out for two shapes: a flat cylindrical punch and a parabolic shape. Here we consider “stiff systems”, where the contact stiffness is small compared with the stiffness of the system. The role of the system stiffness will be studied in more detail in a separate paper.

Для данного заглавия нет комментариев.

оставить комментарий.