The onset of double-diffusive convection in a nanofluid saturated porous layer: Cross-diffusion effects / J. C. Umavathi [et al.]

Уровень набора: European Journal of Mechanics - B/FluidsАльтернативный автор-лицо: Umavathi, J. C., Jawali;Sheremet, M. A., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1983-, Mikhail Aleksandrovich;Ojjela, O., Odelu;Reddy, G. J., JanardhanКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Энергетический институт (ЭНИН), Кафедра атомных и тепловых электростанций (АТЭС)Язык: английский.Страна: .Резюме или реферат: The onset of double-diffusive convection in a horizontal porous layer saturated with a nanofluid with the Soret and Dufour effects is studied using both linear and nonlinear stability analyses in a three-dimensional way. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, and the modified Darcy model is used for the porous medium that includes the time derivative term to describe the momentum transport. The thermal energy equation includes the diffusion and cross-diffusion terms. The linear theory depends on the normal mode technique, and the nonlinear analysis depends on the minimal representation of double Fourier series. The effects of the Soret and Dufour parameters, solutal Rayleigh number, viscosity ratio, and conductivity ratio on the stationary and oscillatory convections are presented graphically. It is found that for the stationary mode, the Soret and Dufour parameters, viscosity ratio, and thermal conductivity ratio have a stabilizing effect, while the solutal Rayleigh number destabilizes the system. For the oscillatory mode, the Soret and Dufour parameters, viscosity ratio, and Vadasz number have a stabilizing effect, while the solutal Rayleigh number and the thermal conductivity ratio destabilize the system. We also study the effects of time on transient Nusselt number, which is found to be oscillatory when the time is small. However, when the time becomes very large, all three transient Nusselt number values approach the steady-state values..Примечания о наличии в документе библиографии/указателя: [References: 44 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | наножидкости | пористые среды | броуновское движение | термофорез | эффект Соре Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 44 tit.]

The onset of double-diffusive convection in a horizontal porous layer saturated with a nanofluid with the Soret and Dufour effects is studied using both linear and nonlinear stability analyses in a three-dimensional way. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis, and the modified Darcy model is used for the porous medium that includes the time derivative term to describe the momentum transport. The thermal energy equation includes the diffusion and cross-diffusion terms. The linear theory depends on the normal mode technique, and the nonlinear analysis depends on the minimal representation of double Fourier series. The effects of the Soret and Dufour parameters, solutal Rayleigh number, viscosity ratio, and conductivity ratio on the stationary and oscillatory convections are presented graphically. It is found that for the stationary mode, the Soret and Dufour parameters, viscosity ratio, and thermal conductivity ratio have a stabilizing effect, while the solutal Rayleigh number destabilizes the system. For the oscillatory mode, the Soret and Dufour parameters, viscosity ratio, and Vadasz number have a stabilizing effect, while the solutal Rayleigh number and the thermal conductivity ratio destabilize the system. We also study the effects of time on transient Nusselt number, which is found to be oscillatory when the time is small. However, when the time becomes very large, all three transient Nusselt number values approach the steady-state values.

Для данного заглавия нет комментариев.

оставить комментарий.