Siberian Arctic black carbon sources constrained by model and observation / P. Winiger [et al.]

Уровень набора: Proceedings of the National Academy of Sciences of the United States of AmericaАльтернативный автор-лицо: Winiger, P., Patrik;Andersson, A., August;Eckhardt, S., Sabine;Stohl, A., Andreas;Semiletov, I. P., geographer, Professor of Tomsk Polytechnic University, doctor of geographical Sciences, 1955-, Igor Petrovich;Dudarev, O. V., geologist, researcher of Tomsk Polytechnic University, candidate of geological and mineralogical Sciences, 1955-, Oleg Viktorovich;Charkin, A., Alexander;Shakhova, N. E., geologist, Professor of Tomsk Polytechnic University, doctor of geological-mineralogical Sciences, 1959-, Nataljya Evgenjevna;Klimont, Z., Zbigniew;Heyes, C., Chris;Gustafsson, O., OrjanКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), Институт природных ресурсов (ИПР), Кафедра геологии и разведки полезных ископаемых (ГРПИ), Международная научно-образовательная лаборатория изучения углерода арктических морей (МНОЛ ИУАМ);Национальный исследовательский Томский политехнический университет (ТПУ), Институт неразрушающего контроля (ИНК), Международная научно-образовательная лаборатория неразрушающего контроля (МНОЛ НК)Язык: английский ; резюме, eng.Страна: .Резюме или реферат: Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng·m-3 to 302 ng·m-3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Арктика | радиационный баланс Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng·m-3 to 302 ng·m-3) and dual-isotope–constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.

Для данного заглавия нет комментариев.

оставить комментарий.