Stability of curvilinear Euler-Bernoulli beams in temperature fields / A. V. Krysko [et al.]
Уровень набора: International Journal of Non-Linear MechanicsЯзык: английский.Страна: .Резюме или реферат: In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles..Примечания о наличии в документе библиографии/указателя: [References: p. 214-215 (36 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | электронные пучки | теплопередача | Flexible Euler-Bernoulli beam | Heat transfer | Stability | Curvilinear beam Ресурсы он-лайн:Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: p. 214-215 (36 tit.)]
In this work, stability of thin flexible Bernoulli-Euler beams is investigated taking into account the geometric non-linearity as well as a type and intensity of the temperature field. The applied temperature field T(x,z) is yielded by a solution to the 2D Laplace equation solved for five kinds of thermal boundary conditions, and there are no restrictions put on the temperature distribution along the beam thickness. Action of the temperature field on the beam dynamics is studied with the help of the Duhamel theory, whereas the motion of the beam subjected to the thermal load is yielded employing the variational principles.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.