Interaction of Levitating Microdroplets with Moist Air Flow in the Contact Line Region / O. A. Kabov [et al.]
Уровень набора: Nanoscale and Microscale Thermophysical EngineeringЯзык: английский.Страна: .Резюме или реферат: Self-organization of levitating microdroplets of condensate over a liquid–gas interface has been observed in several recent experiments involving evaporation at high heat fluxes, although the nature of this phenomenon is still not completely understood. We conduct an experimental investigation of the behavior of such an ordered array of microdroplets as it approaches a region of intense evaporation near the contact line. Interaction of the array with the local highly nonuniform gas flow results in breakup of the pattern. Some droplets fly over the contact line region and end up above the dry part of the solid substrate, whereas others are trapped before they approach the contact line. Our experimental setup provides a unique tool for investigation of the moist air flow near the contact line by using microdroplets as tracers. Local gas flow velocities near the contact line are obtained based on trajectories of the droplets..Примечания о наличии в документе библиографии/указателя: [References: 17 tit.].Тематика: электронный ресурс | труды учёных ТПУ | жидкость-газ | испарение | капли | воздушный поток Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 17 tit.]
Self-organization of levitating microdroplets of condensate over a liquid–gas interface has been observed in several recent experiments involving evaporation at high heat fluxes, although the nature of this phenomenon is still not completely understood. We conduct an experimental investigation of the behavior of such an ordered array of microdroplets as it approaches a region of intense evaporation near the contact line. Interaction of the array with the local highly nonuniform gas flow results in breakup of the pattern. Some droplets fly over the contact line region and end up above the dry part of the solid substrate, whereas others are trapped before they approach the contact line. Our experimental setup provides a unique tool for investigation of the moist air flow near the contact line by using microdroplets as tracers. Local gas flow velocities near the contact line are obtained based on trajectories of the droplets.
Для данного заглавия нет комментариев.