Evaluation and prediction of solar radiation for energy management based on neural networks / O. V. Aldoshina, Dinh Van Tai

Уровень набора: (RuTPU)RU\TPU\network\3526, Journal of Physics: Conference SeriesОсновной Автор-лицо: Aldoshina, O. V.Альтернативный автор-лицо: Dinh Van TaiКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет (ТПУ), (2009- )Язык: английский.Резюме или реферат: Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load..Примечания о наличии в документе библиографии/указателя: [References: 10 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | прогнозирование | солнечная радиация | управление | энергия | нейронные сети | возобновляемые источники энергии | интеллектуальные сети | метеорологический мониторинг | энергетические системы | электрические нагрузки Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 10 tit.]

Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.

Для данного заглавия нет комментариев.

оставить комментарий.