Natural convection in a trapezoidal cavity filled with a micropolar fluid under the effect of a local heat source / I. V. Miroshnichenko, M. A. Sheremet, I. Pop
Уровень набора: International Journal of Mechanical SciencesЯзык: английский.Страна: .Резюме или реферат: This paper analyzes laminar natural convection of micropolar fluid in a trapezoidal cavity with a local heater. The bottom and top walls of the enclosure are adiabatic while the left vertical wall and part of the right inclined wall are kept at low and high constant tempratures, respectively. The rest part of the inclined wall is adiabatic. Governing equations formulated in dimensionless variables such as stream function, linear vorticity, angular vorticity and temperature have been solved by finite difference method of the second order accuracy. Computations have been carried out to analyze the effects of Rayleigh number, Prandtl number, vortex viscosity parameter and the heater location on streamlines, isotherms and vorticity profiles as well as the variation of the average Nusselt number and fluid flow rate. It has been shown that bottom position of the heater reflects the heat transfer enhancement..Примечания о наличии в документе библиографии/указателя: [References: 35 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | естественная конвекция | микрополярные жидкости | полости | нагреватели | численные результаты Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 35 tit.]
This paper analyzes laminar natural convection of micropolar fluid in a trapezoidal cavity with a local heater. The bottom and top walls of the enclosure are adiabatic while the left vertical wall and part of the right inclined wall are kept at low and high constant tempratures, respectively. The rest part of the inclined wall is adiabatic. Governing equations formulated in dimensionless variables such as stream function, linear vorticity, angular vorticity and temperature have been solved by finite difference method of the second order accuracy. Computations have been carried out to analyze the effects of Rayleigh number, Prandtl number, vortex viscosity parameter and the heater location on streamlines, isotherms and vorticity profiles as well as the variation of the average Nusselt number and fluid flow rate. It has been shown that bottom position of the heater reflects the heat transfer enhancement.
Для данного заглавия нет комментариев.