Convective heat transfer of micropolar fluid in a horizontal wavy channel under the local heating / I. V. Miroshnichenko [et al.]
Уровень набора: International Journal of Mechanical SciencesЯзык: английский.Страна: .Резюме или реферат: A numerical analysis of laminar mixed convection of micropolar fluid in a horizontal wavy channel with a local heater has been carried out. Governing equations formulated in dimensionless stream function, vorticity and temperature have been solved by finite difference method. Effects of Rayleigh number, Reynolds number, Prandtl number, vortex viscosity parameter and undulation number on streamlines, isotherms, vorticity isolines as well as horizontal velocity and temperature profiles with average Nusselt number at the heater have been studied. It has been found that the average Nusselt number is an increasing function of Rayleigh, Reynolds and Prandtl numbers and a decreasing function of undulation number while an influence of vortex viscosity parameter is non-monotonic..Примечания о наличии в документе библиографии/указателя: [References: 46 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | смешанная конвекция | микроскопические объекты | жидкости | каналы Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 46 tit.]
A numerical analysis of laminar mixed convection of micropolar fluid in a horizontal wavy channel with a local heater has been carried out. Governing equations formulated in dimensionless stream function, vorticity and temperature have been solved by finite difference method. Effects of Rayleigh number, Reynolds number, Prandtl number, vortex viscosity parameter and undulation number on streamlines, isotherms, vorticity isolines as well as horizontal velocity and temperature profiles with average Nusselt number at the heater have been studied. It has been found that the average Nusselt number is an increasing function of Rayleigh, Reynolds and Prandtl numbers and a decreasing function of undulation number while an influence of vortex viscosity parameter is non-monotonic.
Для данного заглавия нет комментариев.