Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis / M. A. Sheremet, D. S. Cimpean, I. Pop
Уровень набора: Applied Thermal EngineeringЯзык: английский.Резюме или реферат: Numerical analysis of natural convective heat transfer and fluid flow inside a porous wavy cavity filled with a nanofluid has been carried out. The domain of interest is a square cavity with a left isothermal wavy wall, while other walls are flat. A heat source of constant temperature is located on the right vertical wall. Governing equations formulated in terms of the dimensionless variables using the Darcy–Boussinesq approximation have been solved on the basis of finite difference method of the second order accuracy. The two-phase nanofluid model including the Brownian diffusion and thermophoresis effects has been used for simulation of nanofluid transport inside the cavity. Analysis has been conducted in a wide range of the Rayleigh number, undulation number and heat source size. It has been found that the local heat source has an efficient influence of the nanofluid flow and heat transfer rate..Примечания о наличии в документе библиографии/указателя: [References: 32 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | нанофлюиды | свободная конвекция | полости | пористая среда | численные результаты Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 32 tit.]
Numerical analysis of natural convective heat transfer and fluid flow inside a porous wavy cavity filled with a nanofluid has been carried out. The domain of interest is a square cavity with a left isothermal wavy wall, while other walls are flat. A heat source of constant temperature is located on the right vertical wall. Governing equations formulated in terms of the dimensionless variables using the Darcy–Boussinesq approximation have been solved on the basis of finite difference method of the second order accuracy. The two-phase nanofluid model including the Brownian diffusion and thermophoresis effects has been used for simulation of nanofluid transport inside the cavity. Analysis has been conducted in a wide range of the Rayleigh number, undulation number and heat source size. It has been found that the local heat source has an efficient influence of the nanofluid flow and heat transfer rate.
Для данного заглавия нет комментариев.