Time-dependent natural convection of micropolar fluid in a wavy triangular cavity / M. A. Sheremet, I. Pop, A. Ishak
Уровень набора: International Journal of Heat and Mass TransferЯзык: английский.Страна: .Резюме или реферат: Natural convection of micropolar fluid in a right-angled wavy triangular cavity has been analyzed numerically. Governing equations formulated in dimensionless stream function, vorticity and temperature using the Boussinesq and Eringen approaches with appropriate initial and boundary conditions have been solved by finite difference method of the second-order accuracy. The effects of the dimensionless time, Prandtl number, vortex viscosity parameter, and undulation number on streamlines, isotherms, vorticity isolines as well as average Nusselt number at wavy wall and fluid flow rate inside the cavity have been studied. Obtained results have revealed essential heat transfer reduction and fluid flow attenuation with vortex viscosity parameter..Примечания о наличии в документе библиографии/указателя: [References: p. 621-622 (52 tit.)].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | triangular wavy cavity | natural convection | micropolar fluid | numerical results | естественная конвекция | микрополярные жидкости | численные результаты | теплопередача Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: p. 621-622 (52 tit.)]
Natural convection of micropolar fluid in a right-angled wavy triangular cavity has been analyzed numerically. Governing equations formulated in dimensionless stream function, vorticity and temperature using the Boussinesq and Eringen approaches with appropriate initial and boundary conditions have been solved by finite difference method of the second-order accuracy. The effects of the dimensionless time, Prandtl number, vortex viscosity parameter, and undulation number on streamlines, isotherms, vorticity isolines as well as average Nusselt number at wavy wall and fluid flow rate inside the cavity have been studied. Obtained results have revealed essential heat transfer reduction and fluid flow attenuation with vortex viscosity parameter.
Для данного заглавия нет комментариев.