Geometry of the isotropic oscillator driven by the conformal mode / A. V. Galajinsky

Уровень набора: The European Physical Journal C, Scientific JournalОсновной Автор-лицо: Galajinsky, A. V., Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT), Professor of the TPU, 1971-, Anton VladimirovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский ; резюме, eng.Резюме или реферат: Geometrization of a Lagrangian conservative system typically amounts to reformulating its equations of motion as the geodesic equations in a properly chosen curved spacetime. The conventional methods include the Jacobi metric and the Eisenhart lift. In this work, a modification of the Eisenhart lift is proposed which describes the isotropic oscillator in arbitrary dimension driven by the one-dimensional conformal mode..Примечания о наличии в документе библиографии/указателя: [References: 13 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Горизонт | лагранжевы координаты | уравнение движения | изотропные модели Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 13 tit.]

Geometrization of a Lagrangian conservative system typically amounts to reformulating its equations of motion as the geodesic equations in a properly chosen curved spacetime. The conventional methods include the Jacobi metric and the Eisenhart lift. In this work, a modification of the Eisenhart lift is proposed which describes the isotropic oscillator in arbitrary dimension driven by the one-dimensional conformal mode.

Для данного заглавия нет комментариев.

оставить комментарий.