Modification of the iterative method for solvinglinear viscoelasticity boundary value problems and itsimplementation by the finite element method / A. A. Svetashkov, N. A. Kupriyanov, K. K. Manabaev

Уровень набора: Acta Mechanica, Scientific JournalОсновной Автор-лицо: Svetashkov, A. A., physicist, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1943-, Aleksandr AndreevichАльтернативный автор-лицо: Kupriyanov, N. A., specialist in the field of materials science, Associate Professor of Tomsk Polytechnic University, candidate of technical sciences, 1951-, Nikolay Amvrosievich;Manabaev, K. K., physicist, assistant of Tomsk Polytechnic University, 1985-, Kairat Kamitovich, 070Язык: английский.Резюме или реферат: The problem of structural design of polymeric and composite viscoelastic materials is currently ofgreat interest. The development of new methods of calculation of the stress–strain state of viscoelastic solidsis also a current mathematical problem, because when solving boundary value problems one needs to considerthe full history of exposure to loads and temperature on the structure. The article seeks to build an iterativealgorithm for calculating the stress–strain state of viscoelastic structures, enabling a complete separation of timeand space variables, thereby making it possible to determine the stresses and displacements at any time withoutregard to the loading history. It presents a modified theoretical basis of the iterative algorithm and providesanalytical solutions of variational problems based on which the measure of the rate of convergence of theiterative process is determined. It also presents the conditions for the separation of space and time variables.The formulation of the iterative algorithm, convergence rate estimates, numerical computation results, andcomparisons with exact solutions are provided in the tension plate problem example.Тематика: электронный ресурс | труды учёных ТПУ | модификация Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

The problem of structural design of polymeric and composite viscoelastic materials is currently ofgreat interest. The development of new methods of calculation of the stress–strain state of viscoelastic solidsis also a current mathematical problem, because when solving boundary value problems one needs to considerthe full history of exposure to loads and temperature on the structure. The article seeks to build an iterativealgorithm for calculating the stress–strain state of viscoelastic structures, enabling a complete separation of timeand space variables, thereby making it possible to determine the stresses and displacements at any time withoutregard to the loading history. It presents a modified theoretical basis of the iterative algorithm and providesanalytical solutions of variational problems based on which the measure of the rate of convergence of theiterative process is determined. It also presents the conditions for the separation of space and time variables.The formulation of the iterative algorithm, convergence rate estimates, numerical computation results, andcomparisons with exact solutions are provided in the tension plate problem example

Для данного заглавия нет комментариев.

оставить комментарий.