An Orthogonal-based Self-starting Numerical Integrator for Second Order Initial and Boundary Value Problems ODEs / U. Mohammed, O. Oyelami, M. E. Semenov
Уровень набора: (RuTPU)RU\TPU\network\3526, Journal of Physics: Conference SeriesЯзык: английский.Страна: .Резюме или реферат: The direct integration of second order initial and boundary value problems is considered in this paper. We employ a new class of orthogonal polynomials constructed as basis function to develop a two-step hybrid block method (2SHBM) adopting collocation technique. The recursive formula of the class of polynomials have been constructed, and then we give analysis of the basic properties of 2SHBM as findings show that the method is accurate and convergent. The boundary locus of the proposed 2SHBM shows that the new scheme is A-stable..Примечания о наличии в документе библиографии/указателя: [References: 18 tit.].Тематика: электронный ресурс | труды учёных ТПУ | краевые задачи | интегрирование | ортогональность | начальные задачи | гибридные методы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнНет реальных экземпляров для этой записи
Title screen
[References: 18 tit.]
The direct integration of second order initial and boundary value problems is considered in this paper. We employ a new class of orthogonal polynomials constructed as basis function to develop a two-step hybrid block method (2SHBM) adopting collocation technique. The recursive formula of the class of polynomials have been constructed, and then we give analysis of the basic properties of 2SHBM as findings show that the method is accurate and convergent. The boundary locus of the proposed 2SHBM shows that the new scheme is A-stable.
Для данного заглавия нет комментариев.
Личный кабинет оставить комментарий.