Leading low-energy effective action in 6D, N=(1,1) SYM theory / I. L. Bukhbinder, E. A. Ivanov, B. S. Merzlikin
Уровень набора: Journal of High Energy PhysicsЯзык: английский.Резюме или реферат: We elaborate on the low-energy effective action of 6D, N=(1,1)N=(1,1) supersymmetric Yang-Mills (SYM) theory in the N=(1,0)N=(1,0) harmonic superspace formulation. The theory is described in terms of analytic N=(1,0)N=(1,0) gauge superfield V ++ and analytic ω-hypermultiplet, both in the adjoint representation of gauge group. The effective action is defined in the framework of the background superfield method ensuring the manifest gauge invariance along with manifest N=(1,0)N=(1,0) supersymmetry. We calculate leading contribution to the one-loop effective action using the on-shell background superfields corresponding to the option when gauge group SU(N) is broken to SU(N − 1) × ϒ(1) ⊂ SU(N). In the bosonic sector the effective action involves the structure ∼F2X2∼F2X2 , where F 4 is a monomial of the fourth degree in an abelian field strength FM N and X stands for the scalar fields from the ω-hypermultiplet. It is manifestly demonstrated that the expectation values of the hypermultiplet scalar fields play the role of a natural infrared cutoff..Примечания о наличии в документе библиографии/указателя: [References: 53 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | extended supersymmetry | superspaces | supersymmetric gauge theory | суперпространство | калибровочная теория Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 53 tit.]
We elaborate on the low-energy effective action of 6D, N=(1,1)N=(1,1) supersymmetric Yang-Mills (SYM) theory in the N=(1,0)N=(1,0) harmonic superspace formulation. The theory is described in terms of analytic N=(1,0)N=(1,0) gauge superfield V ++ and analytic ω-hypermultiplet, both in the adjoint representation of gauge group. The effective action is defined in the framework of the background superfield method ensuring the manifest gauge invariance along with manifest N=(1,0)N=(1,0) supersymmetry. We calculate leading contribution to the one-loop effective action using the on-shell background superfields corresponding to the option when gauge group SU(N) is broken to SU(N − 1) × ϒ(1) ⊂ SU(N). In the bosonic sector the effective action involves the structure ∼F2X2∼F2X2 , where F 4 is a monomial of the fourth degree in an abelian field strength FM N and X stands for the scalar fields from the ω-hypermultiplet. It is manifestly demonstrated that the expectation values of the hypermultiplet scalar fields play the role of a natural infrared cutoff.
Для данного заглавия нет комментариев.