Eisenhart lift of 2-dimensional mechanics / A. P. Fordy, A. V. Galajinsky

Уровень набора: The European Physical Journal C, Scientific JournalОсновной Автор-лицо: Fordy, A. P.Альтернативный автор-лицо: Galajinsky, A. V., Doctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT), Professor of the TPU, 1971-, Anton VladimirovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Резюме или реферат: The Eisenhart lift is a variant of geometrization of classical mechanics with d degrees of freedom in which the equations of motion are embedded into the geodesic equations of a Brinkmann-type metric defined on (d+2) -dimensional spacetime of Lorentzian signature. In this work, the Eisenhart lift of 2-dimensional mechanics on curved background is studied. The corresponding 4-dimensional metric is governed by two scalar functions which are just the conformal factor and the potential of the original dynamical system. We derive a conformal symmetry and a corresponding quadratic integral, associated with the Eisenhart lift. The energy–momentum tensor is constructed which, along with the metric, provides a solution to the Einstein equations. Uplifts of 2-dimensional superintegrable models are discussed with a particular emphasis on the issue of hidden symmetries. It is shown that for the 2-dimensional Darboux–Koenigs metrics, only type I can result in Eisenhart lifts which satisfy the weak energy condition. However, some physically viable metrics with hidden symmetries are presented..Примечания о наличии в документе библиографии/указателя: [References: 28 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | лифт Эйзенхарта | двухмерное проектирование Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 28 tit.]

The Eisenhart lift is a variant of geometrization of classical mechanics with d degrees of freedom in which the equations of motion are embedded into the geodesic equations of a Brinkmann-type metric defined on (d+2) -dimensional spacetime of Lorentzian signature. In this work, the Eisenhart lift of 2-dimensional mechanics on curved background is studied. The corresponding 4-dimensional metric is governed by two scalar functions which are just the conformal factor and the potential of the original dynamical system. We derive a conformal symmetry and a corresponding quadratic integral, associated with the Eisenhart lift. The energy–momentum tensor is constructed which, along with the metric, provides a solution to the Einstein equations. Uplifts of 2-dimensional superintegrable models are discussed with a particular emphasis on the issue of hidden symmetries. It is shown that for the 2-dimensional Darboux–Koenigs metrics, only type I can result in Eisenhart lifts which satisfy the weak energy condition. However, some physically viable metrics with hidden symmetries are presented.

Для данного заглавия нет комментариев.

оставить комментарий.