Improved particle swarm optimization for global maximum power point tracking of partially shaded PV array / I. M. Ibrahim Ahmed, S. S. A. Aboelsaud Raef, S. G. Obukhov

Уровень набора: Electrical engineeringОсновной Автор-лицо: Ibrahim Ahmed, I. M., specialist in the field of electric power engineering, Research Engineer, Tomsk Polytechnic University, 1987-, Ibrahim MohamedАльтернативный автор-лицо: Aboelsaud Raef, S. S. A., specialist in the field of electric power engineering, Research Engineer, Tomsk Polytechnic University, 1987-, Siam Sayed Ahmed;Obukhov, S. G., specialist in the field of electric power engineering, Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences, 1963-, Sergey GennadievichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Отделение электроэнергетики и электротехники (ОЭЭ)Язык: английский.Страна: .Резюме или реферат: This paper presents an improved particle swarm optimization (PSO) algorithm for determining the global maximum power point tracking (GMPP) of photovoltaic (PV) array under partially shaded conditions (PSC). Under PSC, the power–voltage characteristics have a more complex shape with several local peaks and one global peak. Most of the conventional techniques that are applied in the maximum power-tracking control unit of PV stations do not provide reliable tracking of the GMPP under PSC, which leads to decrease the reliability and the performance of the PV power plant. The performances of the proposed PSO algorithm and the conventional perturb and observe algorithms are evaluated using simulations in MATLAB/Simulink. Eight different partial shading patterns have been selected to prove the robustness of the proposed algorithm. A (step-up) DC–DC boost converter is interfaced with the proposed model. The results indicate that the modified PSO algorithm can very fast track the GMPP within 150–280 ms for different shading conditions furthermore the quality of the tracked power is very high as compared with the previous studies in the literature. Also, the average tracking efficiency of the proposed PSO algorithm is higher than 99.8%, which provides good prospects to apply this algorithm in the control search unit for the GMPP in PV stations..Примечания о наличии в документе библиографии/указателя: [References: 35 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | improved particle swarm optimization | global MPPT | P&O algorithm | partial shading Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 35 tit.]

This paper presents an improved particle swarm optimization (PSO) algorithm for determining the global maximum power point tracking (GMPP) of photovoltaic (PV) array under partially shaded conditions (PSC). Under PSC, the power–voltage characteristics have a more complex shape with several local peaks and one global peak. Most of the conventional techniques that are applied in the maximum power-tracking control unit of PV stations do not provide reliable tracking of the GMPP under PSC, which leads to decrease the reliability and the performance of the PV power plant. The performances of the proposed PSO algorithm and the conventional perturb and observe algorithms are evaluated using simulations in MATLAB/Simulink. Eight different partial shading patterns have been selected to prove the robustness of the proposed algorithm. A (step-up) DC–DC boost converter is interfaced with the proposed model. The results indicate that the modified PSO algorithm can very fast track the GMPP within 150–280 ms for different shading conditions furthermore the quality of the tracked power is very high as compared with the previous studies in the literature. Also, the average tracking efficiency of the proposed PSO algorithm is higher than 99.8%, which provides good prospects to apply this algorithm in the control search unit for the GMPP in PV stations.

Для данного заглавия нет комментариев.

оставить комментарий.