Free Solution Convection at Non-Isothermal Evaporation of Aqueous Salt Solution on a Micro-Structured Wall / S. Ya. Misyura

Уровень набора: Nanoscale and Microscale Thermophysical EngineeringОсновной Автор-лицо: Misyura, S. Ya., specialist in the field of power engineering, leading researcher of Tomsk Polytechnic University, candidate of technical sciences, 1964-, Sergey YakovlevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Страна: .Резюме или реферат: Evaporation and heat transfer of layers of aqueous salt solutions have been studied. The behavior of salt solutions is compared for a smooth and micro-structured wall with a rectangular profile. The evaporation rate of the salt solution on the structured wall is 20–30% higher than on the smooth one at high salt concentration. Previously, it was thought that the heat transfer for solutions can be calculated for thin layers and films without taking into account the natural convection in liquid. In this paper, the liquid free convection is shown to play a key role. A simple model linking the solutal and the thermal Marangoni numbers and the Peclet number with free convection of the liquid on a hot structured wall is considered. For correct simulation of the non-isothermal heat and mass transfer, it is necessary to take into account local characteristics of thermal and velocity fields inside a layer of the salt solution, as well as to determine the average characteristic scales of circulation into the liquid. To simplify the analysis it is possible to effectively consider four types of characteristic convective scales, the role of which depends on the thickness and diameter of the solution layer, as well as on the wall temperature. The strong influence of free convection in a thin layer of the solution is extremely important for accurate modeling of a wide range of modern technologies. Intensification of heat transfer and evaporation due to the use of a structured wall can be applied in heat exchangers, to improve efficiency in desalination of water, in energy technologies (e.g., in heat absorption pumps), as well as in chemical technologies..Примечания о наличии в документе библиографии/указателя: [References: 66 tit.].Тематика: электронный ресурс | труды учёных ТПУ | structured surface | evaporation rate | heat transfer | aqueous salt solution | free convection | водные растворы | испарение | теплообмен | конвекция Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 66 tit.]

Evaporation and heat transfer of layers of aqueous salt solutions have been studied. The behavior of salt solutions is compared for a smooth and micro-structured wall with a rectangular profile. The evaporation rate of the salt solution on the structured wall is 20–30% higher than on the smooth one at high salt concentration. Previously, it was thought that the heat transfer for solutions can be calculated for thin layers and films without taking into account the natural convection in liquid. In this paper, the liquid free convection is shown to play a key role. A simple model linking the solutal and the thermal Marangoni numbers and the Peclet number with free convection of the liquid on a hot structured wall is considered. For correct simulation of the non-isothermal heat and mass transfer, it is necessary to take into account local characteristics of thermal and velocity fields inside a layer of the salt solution, as well as to determine the average characteristic scales of circulation into the liquid. To simplify the analysis it is possible to effectively consider four types of characteristic convective scales, the role of which depends on the thickness and diameter of the solution layer, as well as on the wall temperature. The strong influence of free convection in a thin layer of the solution is extremely important for accurate modeling of a wide range of modern technologies. Intensification of heat transfer and evaporation due to the use of a structured wall can be applied in heat exchangers, to improve efficiency in desalination of water, in energy technologies (e.g., in heat absorption pumps), as well as in chemical technologies.

Для данного заглавия нет комментариев.

оставить комментарий.