Solid-Phase Formation of Li-Zn Ferrite under High-Energy Impact / E. V. Nikolaev, E. N. Lysenko, A. P. Surzhikov

Уровень набора: (RuTPU)RU\TPU\network\24092, Materials Science Forum, Scientific JournalОсновной Автор-лицо: Nikolaev, E. V., specialist in the field of electrical engineering, engineer of Tomsk Polytechnic University, 1989-, Evgeny VladimirovichАльтернативный автор-лицо: Lysenko, E. N., Specialist in the field of electrical engineering, Head of the laboratory of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1972-, Elena Nikolaevna;Surzhikov, A. P., physicist, Professor of Tomsk Polytechnic University, doctor of physical and mathematical sciences (DSc), 1951-, Anatoly PetrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Институт неразрушающего контроля, Проблемная научно-исследовательская лаборатория электроники, диэлектриков и полупроводниковЯзык: английский.Страна: .Резюме или реферат: The effect of complex high-energy action, including mechanical milling of Li[2]CO[3]-Fe[2]O[3-ZnO initial reagents mixture and its consistent heating by the pulsed electron beam on solid-phase synthesis was studied by X-ray powder diffraction and thermal analyses. The initial mixture Li[2]CO[3]-Fe[2]O[3]-ZnO corresponds to the ferrite with stoichiometric formula: Li[0.5(1-x)]Zn[x]Fe[2.5-0.5x]О[4], where х=0.2. The same studies were carried out with thermal heating in a laboratory furnace for detection the effect of radiation on the formation of phase composition lithium-zinc ferrite. Initial mixture was milled in AGO-2S planetary ball mill with a milling speed of 2220 rpm for 60 min. Radiation-thermal synthesis of the milled mixture was carried out by the pulsed electron accelerator (ILU-6) at 600°C and 750°C. The maximum time of the isothermal stage was 60 minutes. According to the X-ray powder diffraction and thermogravimetric analysis, it was found that the complex high-energy action leads to decrease a temperature and time of obtaining lithium-zinc ferrite homogeneous in phase composition. The proposed high-energy regimes allow to synthesized lithium-zinc ferrites at 600 °C for 60 minutes, which is much lower compared to conventional ceramic technology..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Impulse Electron Beam | Lithium Ferrites | Mechanical Milling | Thermal Analysis | X-Ray Powder Diffraction | импульсные пучки | литиевые ферриты | механическое измельчение | термический анализ | электронные пучки | рентгеновская дифракция | высокая энергия Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

The effect of complex high-energy action, including mechanical milling of Li[2]CO[3]-Fe[2]O[3-ZnO initial reagents mixture and its consistent heating by the pulsed electron beam on solid-phase synthesis was studied by X-ray powder diffraction and thermal analyses. The initial mixture Li[2]CO[3]-Fe[2]O[3]-ZnO corresponds to the ferrite with stoichiometric formula: Li[0.5(1-x)]Zn[x]Fe[2.5-0.5x]О[4], where х=0.2. The same studies were carried out with thermal heating in a laboratory furnace for detection the effect of radiation on the formation of phase composition lithium-zinc ferrite. Initial mixture was milled in AGO-2S planetary ball mill with a milling speed of 2220 rpm for 60 min. Radiation-thermal synthesis of the milled mixture was carried out by the pulsed electron accelerator (ILU-6) at 600°C and 750°C. The maximum time of the isothermal stage was 60 minutes. According to the X-ray powder diffraction and thermogravimetric analysis, it was found that the complex high-energy action leads to decrease a temperature and time of obtaining lithium-zinc ferrite homogeneous in phase composition. The proposed high-energy regimes allow to synthesized lithium-zinc ferrites at 600 °C for 60 minutes, which is much lower compared to conventional ceramic technology.

Для данного заглавия нет комментариев.

оставить комментарий.