Experimental research into collisions of homogeneous and multi-component liquid droplets / M. V. Piskunov, N. E. Shlegel, P. A. Strizhak, R. S. Volkov

Уровень набора: Chemical Engineering Research and DesignАльтернативный автор-лицо: Piskunov, M. V., specialist in the field of thermal engineering, engineer of Tomsk Polytechnic University, 1991-, Maksim Vladimirovich;Shlegel, N. E., specialist in the field of heat and power engineering, Research Engineer of Tomsk Polytechnic University, 1995-, Nikita Evgenjevich;Strizhak, P. A., Specialist in the field of heat power energy, Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU), 1985-, Pavel Alexandrovich;Volkov, R. S., specialist in the field of power engineering, senior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences, 1987-, Roman SergeevichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)Язык: английский.Страна: .Резюме или реферат: This paper presents the results of experiments recording the collision characteristics of droplets of various liquids with each other in a gas medium. We use water-based compositions typical of fuel, petrochemical, and heat and mass transfer technologies: solutions, emulsions, slurries, immiscible two- and multi-component liquids. The study discusses how droplet dimensions, velocities, impact angles, component concentrations and properties affect interaction regime as well as the number and size of child droplets. Threshold conditions are analyzed for the occurrence of bouncing, separation, coalescence, and disruption of droplets. Basic hypotheses are formulated as to why the collision characteristics of single-component droplets in a gas differ from those of highly heterogeneous multi-component ones. We use the interaction regime maps based on the dimensionless processing of experimental results through angular and linear impact parameters, Weber, Reynolds, Ohnesorge, and capillary numbers. Collisions can provide major atomization, in which the relative surface area of the liquid increases 2–6 times. The values of these parameters are influenced by droplet velocity and size, component type (solid or liquid), concentration and properties (density, viscosity, surface tension), as well as temperature and role (projectile or target) of homogeneous and multi-component droplets..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | homogeneous and multi-component droplet | collision | bouncing | coalescence | separation | disruption | гомогенная конденсация | многокомпонентная жидкость | коллизия | отскок | сращивание | разделение Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

This paper presents the results of experiments recording the collision characteristics of droplets of various liquids with each other in a gas medium. We use water-based compositions typical of fuel, petrochemical, and heat and mass transfer technologies: solutions, emulsions, slurries, immiscible two- and multi-component liquids. The study discusses how droplet dimensions, velocities, impact angles, component concentrations and properties affect interaction regime as well as the number and size of child droplets. Threshold conditions are analyzed for the occurrence of bouncing, separation, coalescence, and disruption of droplets. Basic hypotheses are formulated as to why the collision characteristics of single-component droplets in a gas differ from those of highly heterogeneous multi-component ones. We use the interaction regime maps based on the dimensionless processing of experimental results through angular and linear impact parameters, Weber, Reynolds, Ohnesorge, and capillary numbers. Collisions can provide major atomization, in which the relative surface area of the liquid increases 2–6 times. The values of these parameters are influenced by droplet velocity and size, component type (solid or liquid), concentration and properties (density, viscosity, surface tension), as well as temperature and role (projectile or target) of homogeneous and multi-component droplets.

Для данного заглавия нет комментариев.

оставить комментарий.