3D sound wave focusing by 2D internal periodic structure of 3D external cuboid shape / S. Castineira-Ibanez [et al.]

Уровень набора: Results in PhysicsАльтернативный автор-лицо: Castineira-Ibanez, S., Sergio;Tarrazo-Serrano, D., Daniel;Candelas, P., Pilar;Minin, O. V., physicist, professor of Tomsk Polytechnic University, Doctor of technical sciences, 1960-, Oleg Vladilenovich;Rubio, C., Constanza;Minin, I. V., physicist, Senior researcher of Tomsk Polytechnic University, Doctor of technical sciences, 1960-, Igor VladilenovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа неразрушающего контроля и безопасности, Отделение электронной инженерииЯзык: английский.Резюме или реферат: In this work, we report the focusing effect of a 2D sonic crystal cuboid. The proposed sonic composite lens is vertically extended from a 2-D flat Phononic Crystal Structure, but it is found to be able to focus waves in a three-dimensional manner. By varying the cuboid size, beam dimensions change and transverse beam width values smaller than the classical diffraction limit (~0.3 of wavelength) can be obtained. Numerical results have been obtained by Finite Element Method..Примечания о наличии в документе библиографии/указателя: [References: 10 tit.].Тематика: электронный ресурс | труды учёных ТПУ | 3D | фокусировка | трехмерные волны | звуковые волны Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 10 tit.]

In this work, we report the focusing effect of a 2D sonic crystal cuboid. The proposed sonic composite lens is vertically extended from a 2-D flat Phononic Crystal Structure, but it is found to be able to focus waves in a three-dimensional manner. By varying the cuboid size, beam dimensions change and transverse beam width values smaller than the classical diffraction limit (~0.3 of wavelength) can be obtained. Numerical results have been obtained by Finite Element Method.

Для данного заглавия нет комментариев.

оставить комментарий.