Solar photovoltaic power output forecasting using machine learning technique / Dinh Van Tai

Уровень набора: (RuTPU)RU\TPU\network\3526, Journal of Physics: Conference SeriesОсновной Автор-лицо: Dinh Van TaiКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, (2009- )Язык: английский.Страна: .Резюме или реферат: Photovoltaic (PV) systems are used around the world to generate solar power. Solar power sources are irregular in nature due to the output power of PV systems being intermittent and depending greatly on environmental factors. These factors include, but are not limited to, irradiance, humidity, PV surface temperature, speed of the wind. Due to uncertainties in the photovoltaic generation, it is critical to precisely envisage the solar power generation. Solar power forecasting is necessary for supply and demand planning in an electric grid. This prediction is highly complex and challenging as solar power generation is weather-dependent and uncontrollable. This paper describes the effects of various environmental parameters on the PV system output. Prediction models based on Artificial Neural Networks (ANN) and regression models are evaluated for selective factors. The selection is done by using the correlation-based feature selection (CSF) and ReliefF techniques. The ANN model outperforms all other techniques that were discussed..Примечания о наличии в документе библиографии/указателя: [References: 10 tit.].Тематика: электронный ресурс | труды учёных ТПУ | прогнозирование | солнечная энергия | источники энергии | фотоэлектрические системы | машинное обучение | окружающая среда | искусственные нейронные сети Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 10 tit.]

Photovoltaic (PV) systems are used around the world to generate solar power. Solar power sources are irregular in nature due to the output power of PV systems being intermittent and depending greatly on environmental factors. These factors include, but are not limited to, irradiance, humidity, PV surface temperature, speed of the wind. Due to uncertainties in the photovoltaic generation, it is critical to precisely envisage the solar power generation. Solar power forecasting is necessary for supply and demand planning in an electric grid. This prediction is highly complex and challenging as solar power generation is weather-dependent and uncontrollable. This paper describes the effects of various environmental parameters on the PV system output. Prediction models based on Artificial Neural Networks (ANN) and regression models are evaluated for selective factors. The selection is done by using the correlation-based feature selection (CSF) and ReliefF techniques. The ANN model outperforms all other techniques that were discussed.

Для данного заглавия нет комментариев.

оставить комментарий.