Towards a Theory of Flow Stress in Multimodal Polycrystalline Aggregates. Effects of Dispersion Hardening / D. Cevizovic, A. A. Reshetnyak, Yu. P. Sharkeev

Уровень набора: (RuTPU)RU\TPU\network\4816, AIP Conference ProceedingsОсновной Автор-лицо: Cevizovic, D.Альтернативный автор-лицо: Reshetnyak, A. A.;Sharkeev, Yu. P., physicist, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1950-, Yury PetrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Резюме или реферат: We elaborate the recently introduced theory of flow stress, including yield strength, in polycrystalline materials under quasi-static plastic deformations, thereby extending the case of single-mode aggregates to multimodal ones in the framework of a two-phase model which is characterized by the presence of crystalline and grain-boundary phases. Both analytic and graphic forms of the generalized Hall–Petch relations are obtained for multimodal samples with BCC ([alpha]-phase Fe), FCC (Cu, Al, Ni) and HCP ([alpha]-Ti, Zr) crystalline lattices at T=300K with different values of the grain-boundary (second) phase. The case of dispersion hardening due to a natural incorporation into the model of a third phase including additional particles of doping materials is considered. The maximum of yield strength and the respective extremal grain size of samples are shifted by changing both the input from different grain modes and the values at the second and third phases. We study the influence of multimodality and dispersion hardening on the temperature-dimensional effect for yield strength within the range of 100–350K..Примечания о наличии в документе библиографии/указателя: [References: 7 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | теория напряжений | поликристаллические агрегаты | пластические деформации | упрочнение | текучесть | композитные материалы | сплавы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 7 tit.]

We elaborate the recently introduced theory of flow stress, including yield strength, in polycrystalline materials under quasi-static plastic deformations, thereby extending the case of single-mode aggregates to multimodal ones in the framework of a two-phase model which is characterized by the presence of crystalline and grain-boundary phases. Both analytic and graphic forms of the generalized Hall–Petch relations are obtained for multimodal samples with BCC ([alpha]-phase Fe), FCC (Cu, Al, Ni) and HCP ([alpha]-Ti, Zr) crystalline lattices at T=300K with different values of the grain-boundary (second) phase. The case of dispersion hardening due to a natural incorporation into the model of a third phase including additional particles of doping materials is considered. The maximum of yield strength and the respective extremal grain size of samples are shifted by changing both the input from different grain modes and the values at the second and third phases. We study the influence of multimodality and dispersion hardening on the temperature-dimensional effect for yield strength within the range of 100–350K.

Для данного заглавия нет комментариев.

оставить комментарий.