Integer points in domains and adiabatic limits / Yu. A. Kordyukov, A. A. Yakovlev

Уровень набора: St. Petersburg Mathematical JournalОсновной Автор-лицо: Kordyukov, Yu. A., Yuri ArkadievichАльтернативный автор-лицо: Yakovlev, A. A., specialist in the field of petroleum engineering, First Vice-Rector, Associate Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1981-, Andrey AlexandrovichЯзык: английский.Резюме или реферат: An asymptotic formula is proved for the number of integral points in a family of bounded domains with smooth boundary in Euclidean space; these domains remain unchanged along some linear subspace and expand in the directions orthogonal to this subspace. A sharper estimate for the remainder is obtained in the case where the domains are strictly convex. These results make it possible to improve the remainder estimate in the adiabatic limit formula (due to the first author) for the eigenvalue distribution function of the Laplace operator associated with a bundle-like metric on a compact manifold equipped with a Riemannian foliation in the particular case where the foliation is a linear foliation on the torus and the metric is the standard Euclidean metric on the torus..Примечания о наличии в документе библиографии/указателя: [References: 16 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | Integer points | lattices | domains | convexity | adiabatic limits | foliation | Laplace operator | адиабатические пределы | оператор Лапласа Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 16 tit.]

An asymptotic formula is proved for the number of integral points in a family of bounded domains with smooth boundary in Euclidean space; these domains remain unchanged along some linear subspace and expand in the directions orthogonal to this subspace. A sharper estimate for the remainder is obtained in the case where the domains are strictly convex. These results make it possible to improve the remainder estimate in the adiabatic limit formula (due to the first author) for the eigenvalue distribution function of the Laplace operator associated with a bundle-like metric on a compact manifold equipped with a Riemannian foliation in the particular case where the foliation is a linear foliation on the torus and the metric is the standard Euclidean metric on the torus.

Для данного заглавия нет комментариев.

оставить комментарий.