Explosive disintegration of two-component droplets in a gas-flow at its turbulization / D. V. Antonov, P. A. Strizhak

Уровень набора: Thermal Science = 2002-Основной Автор-лицо: Antonov, D. V., specialist in the field of heat and power engineering, Research Engineer of Tomsk Polytechnic University, 1996-, Dmitry VladimirovichАльтернативный автор-лицо: Strizhak, P. A., Specialist in the field of heat power energy, Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU), 1985-, Pavel AlexandrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)Язык: английский.Резюме или реферат: The experimental results shown that the mode of droplet disintegration dominates in the laminar flow, and the intensive fragmentation is prevalent in the turbulent flow during almost the entire time of heating. Typical dependences of the time of droplet heatup before disintegration or fragmentation on the temperature, flow rate, structure and regime (laminar and turbulent) are established. The studies are conducted with heated air and flue gases to ensure the application of the research results in the technology of thermal and flame cleaning of liquids from irregular impurities. It is shown that in the flow of combustion products the droplet disintegration occurs 15-20% faster than in the air-flow. In this case, the explosive puffing is more often realized. At high-temperatures (more than 400°C) the characteristics of the explosive droplet disintegration in the studied flows are almost identical (differences in disintegration times do not exceed 5% at different flow turbulization). At lower temperatures, the disintegration times differ 3-4 times for the range Re = 2200-3400. In this case, the more Reynolds number is, the more intense is the fragmentation of two-component droplets throughout the heating time. Due to explosive disintegration of intensely evaporating two-component droplets the growth of the relative area of evaporation was 10-25 times..Примечания о наличии в документе библиографии/указателя: [References: 23 tit.].Тематика: электронный ресурс | труды учёных ТПУ | two-component drops | intense heating | explosive disintegration | gas-flow | flow turbulization | air and flue gases | капли | нагрев | взрывной распад | газы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 23 tit.]

The experimental results shown that the mode of droplet disintegration dominates in the laminar flow, and the intensive fragmentation is prevalent in the turbulent flow during almost the entire time of heating. Typical dependences of the time of droplet heatup before disintegration or fragmentation on the temperature, flow rate, structure and regime (laminar and turbulent) are established. The studies are conducted with heated air and flue gases to ensure the application of the research results in the technology of thermal and flame cleaning of liquids from irregular impurities. It is shown that in the flow of combustion products the droplet disintegration occurs 15-20% faster than in the air-flow. In this case, the explosive puffing is more often realized. At high-temperatures (more than 400°C) the characteristics of the explosive droplet disintegration in the studied flows are almost identical (differences in disintegration times do not exceed 5% at different flow turbulization). At lower temperatures, the disintegration times differ 3-4 times for the range Re = 2200-3400. In this case, the more Reynolds number is, the more intense is the fragmentation of two-component droplets throughout the heating time. Due to explosive disintegration of intensely evaporating two-component droplets the growth of the relative area of evaporation was 10-25 times.

Для данного заглавия нет комментариев.

оставить комментарий.