Violation of the Dominant Energy Condition in Geometrodynamics / V. V. Lasukov
Уровень набора: SymmetryЯзык: английский.Страна: .Резюме или реферат: It is shown that in Einstein’s theory and in the theory of gravity with Logunov constraints, there is a field-theoretical model of dark energy that is consistent with the observational data indicating that the Hubble value increases over time. In the developed model of dark energy, the isotropic energy dominant condition is violated. It solves the problem of the cosmological singularity and the singularity of “black holes”. The compact configuration of the scalar field can generate a flux of particles by the pairs of particles production mechanism from the vacuum by a field of barrier and in the process of transformation of thermal energy (Hawking radiation) and acceleration energy into radiation. The scalars can play the role of the so-called “black holes” with no singularity inside themselves..Примечания о наличии в документе библиографии/указателя: [References: 42 tit.].Тематика: электронный ресурс | труды учёных ТПУ | condition of energy dominance | problem of singularity | scalar | доминирование | сингулярность | скаляры Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
[References: 42 tit.]
It is shown that in Einstein’s theory and in the theory of gravity with Logunov constraints, there is a field-theoretical model of dark energy that is consistent with the observational data indicating that the Hubble value increases over time. In the developed model of dark energy, the isotropic energy dominant condition is violated. It solves the problem of the cosmological singularity and the singularity of “black holes”. The compact configuration of the scalar field can generate a flux of particles by the pairs of particles production mechanism from the vacuum by a field of barrier and in the process of transformation of thermal energy (Hawking radiation) and acceleration energy into radiation. The scalars can play the role of the so-called “black holes” with no singularity inside themselves.
Для данного заглавия нет комментариев.