Aspects of Continuous User Identification Based on Free Texts and Hidden Monitoring / E. A. Kochegurova, Yu. A. Martynova

Уровень набора: Programming and Computer SoftwareОсновной Автор-лицо: Kochegurova, E. A., specialist in the field of Informatics and computer engineering, associate Professor of Tomsk Polytechnic University, candidate of technical Sciences, 1958-, Elena AlekseevnaАльтернативный автор-лицо: Martynova, Yu. A., specialist in the field of Informatics and computer engineering, programmer, assistant Professor of Tomsk Polytechnic University, 1988-, Yulia AlekseevnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение информационных технологийЯзык: английский.Страна: .Резюме или реферат: This paper investigates some specific features of continuous user identification based on hidden monitoring of keystroke dynamics when creating a free text. Our analysis of static identification approaches does not reveal any significant limitations on their application to continuous identification. The main feature of continuous identification is the method for collecting dynamic information about key presses and the correction of templates of registered users. The effectiveness of including additional classification features in recognition algorithms, e.g., those associated with the frequency of letters in texts, is demonstrated. A software application is developed to collect and analyze keystroke rhythm samples of users. Research in the domain of users with good computer skills shows quite satisfactory user recognition accuracy (87% on average). Moreover, the accuracy does not depend on the metric distance selected for recognition and improves with the use of scaling factors for letter frequency..Примечания о наличии в документе библиографии/указателя: [References: 44 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | идентификация | пользователи | мониторинг Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 44 tit.]

This paper investigates some specific features of continuous user identification based on hidden monitoring of keystroke dynamics when creating a free text. Our analysis of static identification approaches does not reveal any significant limitations on their application to continuous identification. The main feature of continuous identification is the method for collecting dynamic information about key presses and the correction of templates of registered users. The effectiveness of including additional classification features in recognition algorithms, e.g., those associated with the frequency of letters in texts, is demonstrated. A software application is developed to collect and analyze keystroke rhythm samples of users. Research in the domain of users with good computer skills shows quite satisfactory user recognition accuracy (87% on average). Moreover, the accuracy does not depend on the metric distance selected for recognition and improves with the use of scaling factors for letter frequency.

Для данного заглавия нет комментариев.

оставить комментарий.