Effects of the Initial Gel Fuel Temperature on the Ignition Mechanism and Characteristics of Oil-Filled Cryogel Droplets in the High-Temperature Oxidizer Medium / D. O. Glushkov, A. G. Nigay, V. A. Yanovsky, O. S. Yashutina

Уровень набора: Energy and FuelsАльтернативный автор-лицо: Glushkov, D. O., specialist in the field of power engineering, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences, 1988-, Dmitry Olegovich;Nigay, A. G., specialist in the field of informatics and computer technology, engineer of Tomsk Polytechnic University, 1992-, Aleksandr Gerasimovich;Yanovsky, V. A., Vyacheslav Aleksadrovich;Yashutina, O. S., specialist in the field of heat and power engineering, Research Engineer of Tomsk Polytechnic University, 1993-, Olga SergeevnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова);Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Резюме или реферат: The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture of a combustible liquid and polyvinyl alcohol. The composition of primary oil emulsions was as follows: the aqueous solution of polyvinyl alcohol (5, 10 wt %) + 40-60 vol % of oil + 2 vol % of emulsifier. The initial temperature of gel fuels ranged from 188 to 293 K. Combustion was initiated in high-temperature motionless air at 873-1273 K. Using a high-speed video recording system, we established that at different initial temperatures of the gel fuel, a set of identical processes occurs during the induction period; these are different from the same physical and chemical processes during the ignition of a combustible liquid. After reaching threshold conditions, the flame spreads in the droplet's vicinity from a hot spot through the gas mixture. Hot spot is an ignited and a small-sized fragment separating and moving away from the molten fuel droplet as a result of a microexplosion. The values of the main process characteristic - ignition delay times - differ 25-95% for fuel samples with the initial temperature of 293 K and temperatures of 188-233 K because of a long heating and melting stage of the latter. This is explained by a 2.5-3.6-fold difference in the amount of energy, which is necessary to supply to a colder fuel sample for this phase transformation to occur, other things being equal..Аудитория: .Тематика: труды учёных ТПУ | электронный ресурс | redox reactions | liquids | fossil fuels | gels | окислительно-восстановительные реакции | жидкости | ископаемое топливо | гели Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture of a combustible liquid and polyvinyl alcohol. The composition of primary oil emulsions was as follows: the aqueous solution of polyvinyl alcohol (5, 10 wt %) + 40-60 vol % of oil + 2 vol % of emulsifier. The initial temperature of gel fuels ranged from 188 to 293 K. Combustion was initiated in high-temperature motionless air at 873-1273 K. Using a high-speed video recording system, we established that at different initial temperatures of the gel fuel, a set of identical processes occurs during the induction period; these are different from the same physical and chemical processes during the ignition of a combustible liquid. After reaching threshold conditions, the flame spreads in the droplet's vicinity from a hot spot through the gas mixture. Hot spot is an ignited and a small-sized fragment separating and moving away from the molten fuel droplet as a result of a microexplosion. The values of the main process characteristic - ignition delay times - differ 25-95% for fuel samples with the initial temperature of 293 K and temperatures of 188-233 K because of a long heating and melting stage of the latter. This is explained by a 2.5-3.6-fold difference in the amount of energy, which is necessary to supply to a colder fuel sample for this phase transformation to occur, other things being equal.

Для данного заглавия нет комментариев.

оставить комментарий.