Parametrical Synthesis of Linear Controllers in Aperiodical Systems on Basis of Decomposition Approach / S. A. Gaivoronsky (Gayvoronsky), T. A. Ezangina, M. I. Pushkarev, I. V. Khozhaev

Уровень набора: International Review of Automatic Control (IREACO)Альтернативный автор-лицо: Gaivoronsky (Gayvoronsky), S. A., specialist in the field of informatics and computer technology, Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences, 1961-, Sergey Anatolievich;Ezangina, T. A., specialist in the field of informatics and computer engineering, engineer of Tomsk Polytechnic University, 1987-, Tatiana Aleksandrovna;Pushkarev, M. I., specialist in the field of automatic control, Associate Professor of Tomsk Polytechnic University, Candidate of Sciences, 1987-, Maksim Ivanovich;Khozhaev, I. V., specialist in the field of informatics and computer engineering, engineer of Tomsk Polytechnic University, 1992-, Ivan ValerievichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение автоматизации и робототехники;Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Научно-исследовательская лаборатория телекоммуникаций, приборостроения и морской геологии, Отдел приборостроенияЯзык: английский.Страна: .Резюме или реферат: This article deals with the issue of parametric synthesis of a linear controller that provides aperiodical character of transition processes. The proposed solution addresses a decomposition approach towards the parametric synthesis of linear controllers in aperiodical interval control systems. The approach relies on the division of a characteristic polynomial of a system into the dominating polynomial, provided a dominating real pole, and a free polynomial that defines the rest system poles allocation. In order to allocate the free polynomial roots at a maximum possible distance from an imaginary axis, the sufficient conditions providing a quasi-maximum degree of stability have been set. The decomposition approach in combination with these conditions has allowed developing the methodology on parametric synthesis for linear controllers providing the quasi-maximum degree of the polynomial roots domination. The methodology implementation has been carried out in practice and introduced in this paper with a numerical example..Тематика: труды учёных ТПУ | электронный ресурс | parametric synthesis | control system | dominating roots | interval characteristic polynomial | degree of stability | linear controller | параметрический синтез | системы контроля | доминирующие полюса | полиномы | контроллеры Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

This article deals with the issue of parametric synthesis of a linear controller that provides aperiodical character of transition processes. The proposed solution addresses a decomposition approach towards the parametric synthesis of linear controllers in aperiodical interval control systems. The approach relies on the division of a characteristic polynomial of a system into the dominating polynomial, provided a dominating real pole, and a free polynomial that defines the rest system poles allocation. In order to allocate the free polynomial roots at a maximum possible distance from an imaginary axis, the sufficient conditions providing a quasi-maximum degree of stability have been set. The decomposition approach in combination with these conditions has allowed developing the methodology on parametric synthesis for linear controllers providing the quasi-maximum degree of the polynomial roots domination. The methodology implementation has been carried out in practice and introduced in this paper with a numerical example.

Для данного заглавия нет комментариев.

оставить комментарий.