How to transform all multiple solutions of the Kemeny Ranking Problem into a single solution / S. V. Muravyov (Murav’ev), P. F. Baranov, E. Y. Emelyanova

Уровень набора: (RuTPU)RU\TPU\network\3526, Journal of Physics: Conference SeriesОсновной Автор-лицо: Muravyov (Murav’ev), S. V., specialist in the field of control and measurement equipment, Professor of Tomsk Polytechnic University,Doctor of technical sciences, 1954-, Sergey VasilyevichАльтернативный автор-лицо: Baranov, P. F., specialist in the field of control and measurement equipment, Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences, 1987-, Pavel Fedorovich;Emelyanova, E. Y., specialist in the field of control and measurement equipment, Senior Lecturer of Tomsk Polytechnic University, 1984-, Ekaterina YurevnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение автоматизации и робототехникиЯзык: английский.Страна: .Резюме или реферат: Preference aggregation as a problem of a single consensus ranking determination, using Kemeny rule, for m rankings, including ties, of n alternatives is considered in the paper. The Kemeny Ranking Problem (KRP) may have considerably more than one optimal solutions (strict orders or permutations of the alternatives) and, hence, special efforts to deal with this phenomenon are needed. In the paper, there is proposed an efficient formal rule for convolution of the N multiple optimal permutations, the output profile Я(N, n), into an exact single final consensus ranking, which can include ties. The convolution rule is as follows: in the final consensus ranking, alternatives are arranged in ascending order of their rank sums (total ranks) calculated for the output profile Я; some two alternatives are considered to be tolerant if they have the same rank sums in Я. The equivalent convolution rule can be also applied as follows: in the final consensus ranking, alternatives are arranged in descending order of row sums (total scores) calculated for a tournament table built for Я; some two alternatives are deemed to be tolerant if they have the same row sums. It is shown that, for any alternative, its total rank and total score are equal in sum to the output profile dimension NЧn. The convolution rules are validated using Borda count..Тематика: электронный ресурс | труды учёных ТПУ | ранжирование Кемени | свертка | оптимальные решения Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

Preference aggregation as a problem of a single consensus ranking determination, using Kemeny rule, for m rankings, including ties, of n alternatives is considered in the paper. The Kemeny Ranking Problem (KRP) may have considerably more than one optimal solutions (strict orders or permutations of the alternatives) and, hence, special efforts to deal with this phenomenon are needed. In the paper, there is proposed an efficient formal rule for convolution of the N multiple optimal permutations, the output profile Я(N, n), into an exact single final consensus ranking, which can include ties. The convolution rule is as follows: in the final consensus ranking, alternatives are arranged in ascending order of their rank sums (total ranks) calculated for the output profile Я; some two alternatives are considered to be tolerant if they have the same rank sums in Я. The equivalent convolution rule can be also applied as follows: in the final consensus ranking, alternatives are arranged in descending order of row sums (total scores) calculated for a tournament table built for Я; some two alternatives are deemed to be tolerant if they have the same row sums. It is shown that, for any alternative, its total rank and total score are equal in sum to the output profile dimension NЧn. The convolution rules are validated using Borda count.

Для данного заглавия нет комментариев.

оставить комментарий.