Additives to Coal-Based Fuel Pellets for the Intensification of Combustion and Reduction in Anthropogenic Gas Emissions / M. V. Klepikov, T. Kudelova, K. K. Paushkina, P. A. Strizhak

Уровень набора: Applied SciencesАльтернативный автор-лицо: Klepikov, M. V., Dmitry Mikhaylovich;Kudelova, T., Tereza;Paushkina, K. K., specialist in the field of heat and power engineering, Engineer of Tomsk Polytechnic University, assistant, 1998-, Kristina Konstantinovna;Strizhak, P. A., Specialist in the field of heat power energy, Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU), 1985-, Pavel AlexandrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)Язык: английский.Резюме или реферат: Cylinder-shaped fuel pellets that were 3 mm in diameter and 3 mm in height, with a mass of 20 mg, were produced by compressing dry coal processing waste under the pressure of 5 MPa. The first group of pellets from coal dust with a particle size less than 140 µm did not contain any additives. The pellets of the second group of fuel compositions contained an oil-impregnated porous polymer material particle with a size of 0.5 mm in the central part of the experimental sample. The particle was surrounded by coal dust from all sides. The ratio of components was 90:10% for coal dust: polymer particle. The latter value almost completely corresponds to the fraction of oil in the fuel composition, since the mass of a porous polymer material particle is negligible. The third group of compositions was a 70:30% mixture of coal dust with wood sawdust with a particle size less than 45 µm, or 45–100, 100–200 and 200–500 µm. The ignition and combustion of single fuel pellets were studied under radiant heating in an air medium while varying the temperature from 800 to 1000 °C. The processes during the fuel combustion were recorded by a high-speed video camera, and the concentrations of the main anthropogenic emissions in flue gases were measured by a gas analyzer.; The main characteristics were established-ignition delay times (2-8 s) and duration of burnout (40-90 s)-at different heating temperatures. A difference was established in the combustion mechanisms of the pellets, when adding various components to the fuel mixture composition. This has a direct influence on the induction period duration and combustion time, other conditions being equal, as well as on the concentration of nitrogen and sulfur oxides in the flue gases. Adding an oil-impregnated porous polymer particle to the fuel composition intensifies ignition and combustion, since the times of ignition delay and complete burnout of fuel pellets under threshold conditions decrease by 70%, whereas adding wood sawdust reduces the content of nitrogen and sulfur oxides in the flue gases by 30% and 25%, respectively..Примечания о наличии в документе библиографии/указателя: [References: 44 tit.].Тематика: электронный ресурс | труды учёных ТПУ | fuel pellets | coal waste | wood sawdust | oil waste | combustion | anthropogenic emissions | отходы | опилки | горение Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 44 tit.]

Cylinder-shaped fuel pellets that were 3 mm in diameter and 3 mm in height, with a mass of 20 mg, were produced by compressing dry coal processing waste under the pressure of 5 MPa. The first group of pellets from coal dust with a particle size less than 140 µm did not contain any additives. The pellets of the second group of fuel compositions contained an oil-impregnated porous polymer material particle with a size of 0.5 mm in the central part of the experimental sample. The particle was surrounded by coal dust from all sides. The ratio of components was 90:10% for coal dust: polymer particle. The latter value almost completely corresponds to the fraction of oil in the fuel composition, since the mass of a porous polymer material particle is negligible. The third group of compositions was a 70:30% mixture of coal dust with wood sawdust with a particle size less than 45 µm, or 45–100, 100–200 and 200–500 µm. The ignition and combustion of single fuel pellets were studied under radiant heating in an air medium while varying the temperature from 800 to 1000 °C. The processes during the fuel combustion were recorded by a high-speed video camera, and the concentrations of the main anthropogenic emissions in flue gases were measured by a gas analyzer.

The main characteristics were established-ignition delay times (2-8 s) and duration of burnout (40-90 s)-at different heating temperatures. A difference was established in the combustion mechanisms of the pellets, when adding various components to the fuel mixture composition. This has a direct influence on the induction period duration and combustion time, other conditions being equal, as well as on the concentration of nitrogen and sulfur oxides in the flue gases. Adding an oil-impregnated porous polymer particle to the fuel composition intensifies ignition and combustion, since the times of ignition delay and complete burnout of fuel pellets under threshold conditions decrease by 70%, whereas adding wood sawdust reduces the content of nitrogen and sulfur oxides in the flue gases by 30% and 25%, respectively.

Для данного заглавия нет комментариев.

оставить комментарий.