Determination of vertex polynomials to analyse robust stability of control systems with interval parameters / S. A. Gaivoronsky (Gayvoronsky), T. A. Ezangina, M. I. Pushkarev, I. V. Khozhaev

Уровень набора: IET Control Theory & ApplicationsАльтернативный автор-лицо: Gaivoronsky (Gayvoronsky), S. A., specialist in the field of informatics and computer technology, Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences, 1961-, Sergey Anatolievich;Ezangina, T. A., specialist in the field of informatics and computer engineering, engineer of Tomsk Polytechnic University, 1987-, Tatiana Aleksandrovna;Pushkarev, M. I., specialist in the field of automatic control, Associate Professor of Tomsk Polytechnic University, Candidate of Sciences, 1987-, Maksim Ivanovich;Khozhaev, I. V., specialist in the field of informatics and computer engineering, engineer of Tomsk Polytechnic University, 1992-, Ivan ValerievichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Отделение автоматизации и робототехникиЯзык: английский.Резюме или реферат: The study describes the application of the root locus theory for a system whose characteristic polynomial has interval coefficients. For the proposed system, an interval extension of the basic angular equation of the root locus is performed. Upon the conditions for defining the robust oscillatory stability degree through a complex pole of the system, the double interval angular inequations are obtained. These inequations specify the range of the exit angles going out of the poles for all edge branches of the root locus. On the basis of the exit angles of edge branches going out of the real pole, the condition for determining the robust aperiodic stability degree is obtained. Moreover, an algorithm for finding the validation vertices of the polyhedron of coefficients is developed and some sets of vertex polynomials for low?order systems are specified. The study also presents some numerical examples for analysing the robust stability degree in interval systems, which confirm our theoretical results. It is concluded that the determined validation vertices provide an optimal solution to the analysis of robust stability..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | polynomials | control system synthesis | uncertain systems | stability | root loci | robust control | geometry | interval coefficients | interval extension Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

The study describes the application of the root locus theory for a system whose characteristic polynomial has interval coefficients. For the proposed system, an interval extension of the basic angular equation of the root locus is performed. Upon the conditions for defining the robust oscillatory stability degree through a complex pole of the system, the double interval angular inequations are obtained. These inequations specify the range of the exit angles going out of the poles for all edge branches of the root locus. On the basis of the exit angles of edge branches going out of the real pole, the condition for determining the robust aperiodic stability degree is obtained. Moreover, an algorithm for finding the validation vertices of the polyhedron of coefficients is developed and some sets of vertex polynomials for low?order systems are specified. The study also presents some numerical examples for analysing the robust stability degree in interval systems, which confirm our theoretical results. It is concluded that the determined validation vertices provide an optimal solution to the analysis of robust stability.

Для данного заглавия нет комментариев.

оставить комментарий.