Application of the laser induced phosphorescence method to the analysis of temperature distribution in heated and evaporating droplets / P. A. Strizhak, R. S. Volkov, D. V. Antonov [et al.]

Уровень набора: International Journal of Heat and Mass TransferАльтернативный автор-лицо: Strizhak, P. A., Specialist in the field of heat power energy, Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU), 1985-, Pavel Alexandrovich;Volkov, R. S., specialist in the field of power engineering, senior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences, 1987-, Roman Sergeevich;Antonov, D. V., specialist in the field of heat and power engineering, Research Engineer of Tomsk Polytechnic University, 1996-, Dmitry Vladimirovich;Castanet, G., Guillaume;Sazhin, S., SergeiКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа энергетики, Научно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова);Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- )Язык: английский.Страна: .Резюме или реферат: Results of detailed analysis of temperature fields in droplets of four widely used liquids (water, kerosene, Diesel and gasoline (petroleum oil) fuels) are presented. Single droplets suspended on a wire were heated in a flow of hot air. The initial droplet radii were in the range 1 to 2 mm, air temperature was in the range 20⁰ C to 500⁰ C, air flow velocity was 3-3.5 m/s. The droplet temperature was measured based on Laser Induced Phosphorescence (LIP). BAM:Eu (BaMgAl₁₀O₁₇:Eu²⁺) microparticles were introduced into the droplets for the emission of a temperature-sensitive phosphorescent signal. Optical sectioning inside the droplet was performed using a thin laser sheet, while two cameras detected the phosphorescence signal in two spectral bands. A ratiometric approach using the pixel-to-pixel ratio of the images recorded by the two cameras allowed us to determine the local temperature within the heated and evaporating droplet. The range of applicability and the advantages/shortcomings of the method are established alongside the sources of errors. The experimentally observed droplet surface temperatures are compared with the predictions of the customised version of ANSYS Fluent with the Effective Thermal Conductivity (ETC) model implemented into it via User Defined Functions (UDF). It is shown that ANSYS Fluent can correctly predict the trend of the time evolution of these temperatures..Примечания о наличии в документе библиографии/указателя: [References: 43 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | phosphorous | droplets | lasers | heating | evaporation | mathematical models | математическая модель | нагревание | испарение | капли | лазер | фосфоресценция | ANSYS Fluent Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 43 tit.]

Results of detailed analysis of temperature fields in droplets of four widely used liquids (water, kerosene, Diesel and gasoline (petroleum oil) fuels) are presented. Single droplets suspended on a wire were heated in a flow of hot air. The initial droplet radii were in the range 1 to 2 mm, air temperature was in the range 20⁰ C to 500⁰ C, air flow velocity was 3-3.5 m/s. The droplet temperature was measured based on Laser Induced Phosphorescence (LIP). BAM:Eu (BaMgAl₁₀O₁₇:Eu²⁺) microparticles were introduced into the droplets for the emission of a temperature-sensitive phosphorescent signal. Optical sectioning inside the droplet was performed using a thin laser sheet, while two cameras detected the phosphorescence signal in two spectral bands. A ratiometric approach using the pixel-to-pixel ratio of the images recorded by the two cameras allowed us to determine the local temperature within the heated and evaporating droplet. The range of applicability and the advantages/shortcomings of the method are established alongside the sources of errors. The experimentally observed droplet surface temperatures are compared with the predictions of the customised version of ANSYS Fluent with the Effective Thermal Conductivity (ETC) model implemented into it via User Defined Functions (UDF). It is shown that ANSYS Fluent can correctly predict the trend of the time evolution of these temperatures.

Для данного заглавия нет комментариев.

оставить комментарий.