Dielectric particle-based strategy to design a new self-bending subwavelength structured light beams / I. V. Minin, O. V. Minin
Уровень набора: (RuTPU)RU\TPU\network\2008, IOP Conference Series: Materials Science and EngineeringЯзык: английский.Резюме или реферат: During last 2 years it was shown that an electromagnetic field can be made to curve after propagation through a simple dielectric material of special shape, which adds a new-found degree of simplicity. This effect was termed 'photonic hooks' - it is an unique electromagnetic beam configuration behind a mesoscale dielectric particle with a broken symmetry and differ from Airy-family beams. PH features the radius of curvature, which is about 2 times smaller than the electromagnetic wavelength - this is the smallest curvature radius of electromagnetic waves ever reported. The nature of a photonic hook is in dispersion of the phase velocity of the waves inside of particle, resulting in interference. Here, we report a new dielectric particlebased strategy to design self-bending subwavelength structured light beams..Примечания о наличии в документе библиографии/указателя: [References: 23 tit.].Тематика: электронный ресурс | труды учёных ТПУ | световые пучки | диэлектрические материалы | диэлектрические частицы | интерференция Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайнTitle screen
[References: 23 tit.]
During last 2 years it was shown that an electromagnetic field can be made to curve after propagation through a simple dielectric material of special shape, which adds a new-found degree of simplicity. This effect was termed 'photonic hooks' - it is an unique electromagnetic beam configuration behind a mesoscale dielectric particle with a broken symmetry and differ from Airy-family beams. PH features the radius of curvature, which is about 2 times smaller than the electromagnetic wavelength - this is the smallest curvature radius of electromagnetic waves ever reported. The nature of a photonic hook is in dispersion of the phase velocity of the waves inside of particle, resulting in interference. Here, we report a new dielectric particlebased strategy to design self-bending subwavelength structured light beams.
Для данного заглавия нет комментариев.