Preceramic paper-derived SiCf/Ti3Al(Si)C2 and SiCf/Ti3SiC2 MAX-phase based laminates fabricated using spark plasma sintering / E. B. Kashkarov, N. S. Pushilina, M. S. Syrtanov [et al.]

Уровень набора: Scripta MaterialiaАльтернативный автор-лицо: Kashkarov, E. B., Physicist, Associate Scientist of Tomsk Polytechnic University, Assistant, 1991-, Egor Borisovich;Pushilina, N. S., physicist, associate Professor of Tomsk Polytechnic University, candidate of physico-mathematical Sciences, head of laboratory, 1984-, Natalia Sergeevna;Syrtanov, M. S., physicist, engineer of Tomsk Polytechnic University, 1990-, Maksim Sergeevich;Krotkevich, D., physicist, engineer of Tomsk Polytechnic University, 1990-, Dmitry;Gotman, I., Specialist in the field of material science, Leading researcher of Tomsk Polytechnic University, 1957-, Irina;Travitsky (Travitzky), N., specialist in the field of material science, Professor of Tomsk Polytechnic University, 1951-, NakhumКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Отделение экспериментальной физики;Национальный исследовательский Томский политехнический университет, Инженерная школа новых производственных технологий, Отделение материаловеденияЯзык: английский.Страна: .Резюме или реферат: For the first time SiCf/Ti3Al(Si)C2 and SiCf/Ti3SiC2 MAX-phase based laminates were fabricated from preceramic papers by spark plasma sintering (SPS). The fibers were coated with a 4-µm layer of carbon by chemical vapor deposition. The phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The flexural strength of Ti3Al(Si)C2-based laminates with carbon coated SiC fibers was ~990 MPa, which is 20% higher compared to laminates with uncoated fibers. The carbon coating prevents chemical reaction between the fiber layers and MAX-phase based laminates, providing toughening mechanisms associated with fiber detachment and pull-out. No significant reaction of the fibers occurs during the sintering of SiCf/Ti3SiC2 based laminates, which has a flexural strength of ~850 MPa. The layer-by-layer reinforced structure of laminates along with the presence of strengthening phases (TiC and Al2O3) provides toughening mechanisms due to deflection and branching of cracks at macro and micro scales..Примечания о наличии в документе библиографии/указателя: [References: 42 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | layered structures | MAX phase | fibers | spark plasma sintering | mechanical properties | слоистые конструкции | волокна | искровое плазменное спекание | механические свойства Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 42 tit.]

For the first time SiCf/Ti3Al(Si)C2 and SiCf/Ti3SiC2 MAX-phase based laminates were fabricated from preceramic papers by spark plasma sintering (SPS). The fibers were coated with a 4-µm layer of carbon by chemical vapor deposition. The phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The flexural strength of Ti3Al(Si)C2-based laminates with carbon coated SiC fibers was ~990 MPa, which is 20% higher compared to laminates with uncoated fibers. The carbon coating prevents chemical reaction between the fiber layers and MAX-phase based laminates, providing toughening mechanisms associated with fiber detachment and pull-out. No significant reaction of the fibers occurs during the sintering of SiCf/Ti3SiC2 based laminates, which has a flexural strength of ~850 MPa. The layer-by-layer reinforced structure of laminates along with the presence of strengthening phases (TiC and Al2O3) provides toughening mechanisms due to deflection and branching of cracks at macro and micro scales.

Для данного заглавия нет комментариев.

оставить комментарий.