D-ConvNet: Deep learning model for enhancement of brain MR images / К. Srinivasan, V. Sharma, D. N. K. Dzhayakodi (Jayakody) Arachshiladzh, D. R. Vincent

Уровень набора: Basic and Clinical Pharmacology and ToxicologyАльтернативный автор-лицо: Srinivasan, К., Kathiravan;Sharma, V., Vishal;Dzhayakodi (Jayakody) Arachshiladzh, D. N. K., specialist in the field of electronics, Professor of Tomsk Polytechnic University, 1983-, Dushanta Nalin Kumara;Vincent, D. R., Durai RajКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Научно-образовательный центр "Автоматизация и информационные технологии"Язык: английский.Резюме или реферат: In clinical and medical imaging, the magnetic resonance (MR) images obtained, generally do not have a very high resolution because of the several factors like patient's comfort, scanning time, scanning equipment limitations, long sampling times, and so on. However, the MR imaging is always favored by physicians as one of the most trusted modes for clinical pathology, disease diagnosis, and treatment. Therefore, the enhancement of low-resolution MR image to a high-resolution MR image is critical for precise and effective clinical diagnosis. Furthermore, single-image super-resolution is an inverse problem because of its ill-posed characteristics. This problem can be surpassed by using deep learning models such as deep convolutional neural networks (D-ConvNet)..Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | МРТ | диагностика | патологии | заболевания Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

In clinical and medical imaging, the magnetic resonance (MR) images obtained, generally do not have a very high resolution because of the several factors like patient's comfort, scanning time, scanning equipment limitations, long sampling times, and so on. However, the MR imaging is always favored by physicians as one of the most trusted modes for clinical pathology, disease diagnosis, and treatment. Therefore, the enhancement of low-resolution MR image to a high-resolution MR image is critical for precise and effective clinical diagnosis. Furthermore, single-image super-resolution is an inverse problem because of its ill-posed characteristics. This problem can be surpassed by using deep learning models such as deep convolutional neural networks (D-ConvNet).

Для данного заглавия нет комментариев.

оставить комментарий.