Role of protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase, KATP channels and MPT pore in the signaling pathway of the cardioprotective effect of chronic continuous hypoxia / S. Yu. Tsibulnikov, L. N. Maslov, N. V. Naryzhnaya [et al.]
Уровень набора: General Physiology and BiophysicsЯзык: английский.Страна: .Резюме или реферат: It was established that adaptation to chronic continuous normobaric hypoxia (CCNH) increases cardiac tolerance to ischemia and reperfusion. Coronary artery occlusion (20 min) and reperfusion (3 h) was performed in Wistar rats. CCNH promoted a decrease in the infarct size/ area at risk ratio in 2-fold. CCNH promoted an increase in the nitrite/nitrate levels in blood serum and myocardium. Pretreatment with protein kinase C (PKC) inhibitor chelerythrine, NO-synthase (NOS) inhibitor L-NAME, iNOS inhibitor S-methylisothiourea, KATP channel blocker glibenclamide, mitoKATP channel blocker 5-hydroxydecanoic acid abolished the infarct-reducing effect of CCNH. The non-selective tyrosine kinase inhibitor genistein attenuated but not eliminated infarct-sparing effect of CCNH. The nNOS inhibitor 7-nitroindazole, sarcKATP channel blocker HMR 1098, MPT pore inhibitor atractyloside, PI3 kinase inhibitor wortmannin did not reverse infarct-limiting effect of CCNH. It was concluded that infarct-reducing effect of CCNH is mediated via PKC, iNOS activation and mitoKATP channel opening. While nNOS, PI3 kinase, sarcKATP channel, MPT pore are not involved in the development of CCNH-induced cardiac tolerance to impact of ischemia-reperfusion..Примечания о наличии в документе библиографии/указателя: [References: p. 544-547 (49 tit.)].Тематика: электронный ресурс | труды учёных ТПУ | chronic hypoxia | myocardial infarction | kinases | MPT pore | кардиодиагностика | гипоксия | ишемия | сердечные заболевания Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: p. 544-547 (49 tit.)]
It was established that adaptation to chronic continuous normobaric hypoxia (CCNH) increases cardiac tolerance to ischemia and reperfusion. Coronary artery occlusion (20 min) and reperfusion (3 h) was performed in Wistar rats. CCNH promoted a decrease in the infarct size/ area at risk ratio in 2-fold. CCNH promoted an increase in the nitrite/nitrate levels in blood serum and myocardium. Pretreatment with protein kinase C (PKC) inhibitor chelerythrine, NO-synthase (NOS) inhibitor L-NAME, iNOS inhibitor S-methylisothiourea, KATP channel blocker glibenclamide, mitoKATP channel blocker 5-hydroxydecanoic acid abolished the infarct-reducing effect of CCNH. The non-selective tyrosine kinase inhibitor genistein attenuated but not eliminated infarct-sparing effect of CCNH. The nNOS inhibitor 7-nitroindazole, sarcKATP channel blocker HMR 1098, MPT pore inhibitor atractyloside, PI3 kinase inhibitor wortmannin did not reverse infarct-limiting effect of CCNH. It was concluded that infarct-reducing effect of CCNH is mediated via PKC, iNOS activation and mitoKATP channel opening. While nNOS, PI3 kinase, sarcKATP channel, MPT pore are not involved in the development of CCNH-induced cardiac tolerance to impact of ischemia-reperfusion.
Российский научный фонд 16-15-10001
Для данного заглавия нет комментариев.