Direct measurement of thermophoretic and photophoretic force acting on hot micromotors with optical tweezers / J. С. Frueh, S. Rutkowski, T. Si [et al.]

Уровень набора: Applied Surface ScienceАльтернативный автор-лицо: Frueh, J. С., specialist in the field of medical technology, Researcher of Tomsk Polytechnic University, Ph.D, 1983-, Johannes Christoph;Rutkowski, S., chemist, Research Engineer, Tomsk Polytechnic University, Ph.D, 1981-, Sven;Si, T., Tieyan;Ren, Yu., Yuxuan;Gay, M., Meyu;Tverdokhlebov, S. I., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science, 1961-, Sergei Ivanovich;Qiu, G., Guangyu;Schmitt, J., Jean;He, Q., Qiang;Wang, J., JingКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Научно-образовательный центр Б. П. Вейнберга;Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Лаборатория плазменных гибридных системЯзык: английский.Страна: .Резюме или реферат: Synthetic microparticles present exciting features owing to their customizable light-matter interaction. We hereby report on the optical trapping of two artificial plasmonic microparticles: one with isotropic nanoparticles covering the surface (homogeneous particle) used as a hot Brownian particle and an anisotropic Janus microparticle, half coated with a gold nano-layer. The homogeneous particle decorated with plasmonic nanoparticles on the surface displays features of hot Brownian dynamics as well as photophoretic motion along z dimension in the optical trap. A dielectric particle was used as a reference particle because it acts as a cold particle with only the gradient force affecting it. In general, Janus particles orient in the trap with the dielectric part in the trap center. Plasmonic gold nanostructures absorb the light energy and produce heat; the photothermal forces significantly affect the optical trapping. These hot microspheres display temperature and Janus orientation dependent position distribution significantly different from cold (purely dielectric) microparticles. The developed method allows for the first time direct determination of the photophoretic (thermal force along light propagation direction) and thermophoretic force (light propagation direction independent force) acting on the respective particles, which opens new paths for analysis and control of micromachines..Примечания о наличии в документе библиографии/указателя: [References: 51 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | micromotor | photophoresis | thermophoresis | hot brownian particle | janus particle | optical tweezers | термофорез | броуновские частицы Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 51 tit.]

Synthetic microparticles present exciting features owing to their customizable light-matter interaction. We hereby report on the optical trapping of two artificial plasmonic microparticles: one with isotropic nanoparticles covering the surface (homogeneous particle) used as a hot Brownian particle and an anisotropic Janus microparticle, half coated with a gold nano-layer. The homogeneous particle decorated with plasmonic nanoparticles on the surface displays features of hot Brownian dynamics as well as photophoretic motion along z dimension in the optical trap. A dielectric particle was used as a reference particle because it acts as a cold particle with only the gradient force affecting it. In general, Janus particles orient in the trap with the dielectric part in the trap center. Plasmonic gold nanostructures absorb the light energy and produce heat; the photothermal forces significantly affect the optical trapping. These hot microspheres display temperature and Janus orientation dependent position distribution significantly different from cold (purely dielectric) microparticles. The developed method allows for the first time direct determination of the photophoretic (thermal force along light propagation direction) and thermophoretic force (light propagation direction independent force) acting on the respective particles, which opens new paths for analysis and control of micromachines.

Для данного заглавия нет комментариев.

оставить комментарий.