The deposition of thin titanium-nitrogen coatings on the surface of PCL-basedscaffolds for vascular tissue engineering / V. L. Kudryavtseva, K. S. Stankevich, E. V. Kibler [et al.]

Уровень набора: Applied Physics LettersАльтернативный автор-лицо: Kudryavtseva, V. L., physicist, Engineer of Tomsk Polytechnic University, 1993-, Valeriya Lvovna;Stankevich, K. S., Physicist, Engineer Tomsk Polytechnic University, 1992-, Ksenia Sergeevna;Kibler, E. V., specialist in the field of nuclear technologies, Engineer of Tomsk Polytechnic University, 1995-, Elina Vitaljevna;Golovkin, A. S., Aleksey Sergeevich;Mishanin, A. I., Aleksandr Igorevich;Bolbasov, E. N., physicist, Associate Scientist of Tomsk Polytechnic University, Candidate of Sciences, 1981-, Evgeny Nikolaevich;Choynzonov, E. L., physicist, chief expert of Tomsk Polytechnic University, 1952-, Evgeny Lkhamatsyrenovich;Tverdokhlebov, S. I., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical science, 1961-, Sergei IvanovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Научно-образовательный центр Б. П. Вейнберга;Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Отделение ядерно-топливного цикла;Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Лаборатория плазменных гибридных системЯзык: английский.Страна: .Резюме или реферат: Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts..Примечания о наличии в документе библиографии/указателя: [References: 34 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | покрытия | поверхности | тканевая инженерия | биоразлагаемые полимеры | биосовместимость | трансплантаты Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 34 tit.]

Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.

Для данного заглавия нет комментариев.

оставить комментарий.