Five-Body Integral Equations and Solution of the η−4Nη Problem / O. V. Kolesnikov, A. I. Fiks (Fix)
Уровень набора: Few-Body SystemsЯзык: английский.Резюме или реферат: The Alt-Grassberger-Sandhas equations for the five-body problem are solved for the case of the driving two-body potentials limited to s-waves. The separable pole expansion method is employed to convert the equations into the effective quasi-two-body form. Numerical results are presented for five identical bosons as well as for the system containing an ηη-meson and four nucleons. Accuracy of the separable expansion is investigated. It is shown that both in (1+4)(1+4) and (2+3)(2+3) fragmentation, the corresponding eigenvalues decrease rather rapidly, what, combined with the alternation of their signs, leads to rather good convergence of the results. For the η−4Nη−4N system the crucial influence of the subthreshold behavior of the ηNηN amplitude on the ηη-nuclear low-energy interaction is discussed..Примечания о наличии в документе библиографии/указателя: [References: 34 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 34 tit.]
The Alt-Grassberger-Sandhas equations for the five-body problem are solved for the case of the driving two-body potentials limited to s-waves. The separable pole expansion method is employed to convert the equations into the effective quasi-two-body form. Numerical results are presented for five identical bosons as well as for the system containing an ηη-meson and four nucleons. Accuracy of the separable expansion is investigated. It is shown that both in (1+4)(1+4) and (2+3)(2+3) fragmentation, the corresponding eigenvalues decrease rather rapidly, what, combined with the alternation of their signs, leads to rather good convergence of the results. For the η−4Nη−4N system the crucial influence of the subthreshold behavior of the ηNηN amplitude on the ηη-nuclear low-energy interaction is discussed.
Для данного заглавия нет комментариев.