Forming the Convective Flows and a Cluster of Particles under Spot Heating / S. Ya. Misyura, R. I. Egorov, V. S. Morozov, A. S. Zaitsev
Уровень набора: Nanoscale and Microscale Thermophysical EngineeringЯзык: английский.Страна: .Резюме или реферат: The behavior of self-organization of convective flows in a thin layer of liquid under point (local) heating is investigated experimentally. The interaction of thermocapillary and thermogravitational-free convection can lead both to self-organization of a cluster of micro-vortices in the form of hexagonal structures and to its partial disintegration. Correlation analysis of the velocity field shows that the characteristic convection scales change continuously over time. The largest size of the vortex flow corresponds to the layer diameter (20 mm); the integral convection scale (2.5 mm) characterizes the established interaction of vortex structures in a wide range of sizes; and the dimensions of hexagonal convective cells (80–100 µm) show the lower limit of the characteristic scale of vortex structures. The observed flow macrostructure is determined by the complex nonlinear interaction of vortices of the specified scales. The resulting value of the average integral convection scale can be effectively used to predict the convection velocity..Примечания о наличии в документе библиографии/указателя: [References: 48 tit.].Тематика: электронный ресурс | труды учёных ТПУ | Benard-marangoni Convection | self-assembly | micro-particles | liquid Interface | laser heating Ресурсы он-лайн:Щелкните здесь для доступа в онлайнTitle screen
[References: 48 tit.]
The behavior of self-organization of convective flows in a thin layer of liquid under point (local) heating is investigated experimentally. The interaction of thermocapillary and thermogravitational-free convection can lead both to self-organization of a cluster of micro-vortices in the form of hexagonal structures and to its partial disintegration. Correlation analysis of the velocity field shows that the characteristic convection scales change continuously over time. The largest size of the vortex flow corresponds to the layer diameter (20 mm); the integral convection scale (2.5 mm) characterizes the established interaction of vortex structures in a wide range of sizes; and the dimensions of hexagonal convective cells (80–100 µm) show the lower limit of the characteristic scale of vortex structures. The observed flow macrostructure is determined by the complex nonlinear interaction of vortices of the specified scales. The resulting value of the average integral convection scale can be effectively used to predict the convection velocity.
Для данного заглавия нет комментариев.