66Ga-PET-imaging of GRPR-expression in prostate cancer: production and characterization of [66Ga]Ga-NOTA-PEG2-RM26 / S. S. Rinne, A. Abouzayed, K. Gagnon [et al.]

Уровень набора: Scientific ReportsАльтернативный автор-лицо: Rinne, S. S., Sara;Abouzayed, A., Ayman;Gagnon, K., Katherine;Tolmachev, V. M., specialist in the field of medical technology, Director of the Research Center "Oncoteranostika", Tomsk Polytechnic University, Ph.D, 1961-, Vladimir Maksimilianovich;Orlova, A. M., specialist in the field of medical technology, Senior Researcher, Oncoteranostika Research Center, Tomsk Polytechnic University, Ph.D, 1960-, Anna MarkovnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа химических и биомедицинских технологий, Научно-исследовательский центр "Онкотераностика"Язык: английский.Резюме или реферат: Molecular imaging of the gastrin-releasing peptide receptor (GRPR) could improve patient management in prostate cancer. This study aimed to produce gallium-66 (T½ = 9.5 h) suitable for radiolabeling, and investigate the imaging properties of gallium-66 labeled GRPR-antagonist NOTA-PEG2-RM26 for later-time point PET-imaging of GRPR expression. Gallium-66 was cyclotron-produced using a liquid target, and enriched [66Zn]Zn(NO3)2. In vitro, [66Ga]Ga-NOTA-PEG2-RM26 was characterized in GRPR-expressing PC-3 prostate cancer cells. In vivo, specificity test and biodistribution studies were performed 3 h and 22 h pi in PC-3 xenografted mice. microPET/MR was performed 3 h and 22 h pi. Biodistribution of [66Ga]Ga-NOTA-PEG2-RM26 was compared with [68Ga]Ga-NOTA-PEG2-RM26 3 h pi. [66Ga]Ga-NOTA-PEG2-RM26 was successfully prepared with preserved binding specificity and high affinity towards GRPR. [66Ga]Ga-NOTA-PEG2-RM26 cleared rapidly from blood via kidneys. Tumor uptake was GRPR-specific and exceeded normal organ uptake. Normal tissue clearance was limited, resulting in no improvement of tumor-to-organ ratios with time. Tumors could be clearly visualized using microPET/MR. Gallium-66 was successfully produced and [66Ga]Ga-NOTA-PEG2-RM26 was able to clearly visualize GRPR-expression both shortly after injection and on the next day using PET. However, delayed imaging did not improve contrast for Ga-labeled NOTA-PEG2-RM26..Примечания о наличии в документе библиографии/указателя: [References: 49 tit.].Тематика: электронный ресурс | труды учёных ТПУ | particle physics | prostate cancer | физика | частицы | рак Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 49 tit.]

Molecular imaging of the gastrin-releasing peptide receptor (GRPR) could improve patient management in prostate cancer. This study aimed to produce gallium-66 (T½ = 9.5 h) suitable for radiolabeling, and investigate the imaging properties of gallium-66 labeled GRPR-antagonist NOTA-PEG2-RM26 for later-time point PET-imaging of GRPR expression. Gallium-66 was cyclotron-produced using a liquid target, and enriched [66Zn]Zn(NO3)2. In vitro, [66Ga]Ga-NOTA-PEG2-RM26 was characterized in GRPR-expressing PC-3 prostate cancer cells. In vivo, specificity test and biodistribution studies were performed 3 h and 22 h pi in PC-3 xenografted mice. microPET/MR was performed 3 h and 22 h pi. Biodistribution of [66Ga]Ga-NOTA-PEG2-RM26 was compared with [68Ga]Ga-NOTA-PEG2-RM26 3 h pi. [66Ga]Ga-NOTA-PEG2-RM26 was successfully prepared with preserved binding specificity and high affinity towards GRPR. [66Ga]Ga-NOTA-PEG2-RM26 cleared rapidly from blood via kidneys. Tumor uptake was GRPR-specific and exceeded normal organ uptake. Normal tissue clearance was limited, resulting in no improvement of tumor-to-organ ratios with time. Tumors could be clearly visualized using microPET/MR. Gallium-66 was successfully produced and [66Ga]Ga-NOTA-PEG2-RM26 was able to clearly visualize GRPR-expression both shortly after injection and on the next day using PET. However, delayed imaging did not improve contrast for Ga-labeled NOTA-PEG2-RM26.

Для данного заглавия нет комментариев.

оставить комментарий.