Influence of 3D-printed collimator thickness on near-the-edge scattering of high-energy electrons / S. G. Stuchebrov, A. A. Bulavskaya, Yu. M. Cherepennikov [et al.]

Уровень набора: (RuTPU)RU\TPU\network\25113, Journal of InstrumentationАльтернативный автор-лицо: Stuchebrov, S. G., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of Sciences, 1981-, Sergey Gennadevich;Bulavskaya, A. A., Specialist in the field of nuclear technologies, Research Engineer of Tomsk Polytechnic University, 1993-, Angelina Aleksandrovna;Cherepennikov, Yu. M., physicist, Associate Professor of Tomsk Polytechnic University, Candidate of Sciences, 1989-, Yuriy Mihaylovich;Gargioni, E., Elisabetta;Grigorieva (Grigorjeva), A. A., nuclear technology specialist, engineer of Tomsk Polytechnic University, 1995-, Anna Anatoljevna;Miloichikova, I. A., physicist, engineer of Tomsk Polytechnic University, 1988-, Irina AlekseevnaКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Исследовательская школа физики высокоэнергетических процессов, (2017- );Национальный исследовательский Томский политехнический университет, Инженерная школа ядерных технологий, Отделение ядерно-топливного циклаЯзык: английский.Страна: .Резюме или реферат: In this research, we study how the thickness of a 3D-printed collimator affects high-energy electron scattering. As part of this work, an ABS plastic absorber was produced by fused deposition modeling. Dose distributions at the boundary of the plastic absorber were experimentally observed for 6, 12, and 20 MeV electron beams. For plastic absorber thicknesses of up to 3 cm, dose "hot spots" are observed at the boundary between the primary beam and the beam that has passed through the absorber for 12 and 20 MeV electrons. However, no additional scattering is observed at the absorber edges for the thicknesses of plastic collimators above the minimum thickness providing the total absorption of electron beams (=4 cm for 6 MeV electrons, =8 cm for 12 MeV electrons, and =10 cm for 20 MeV electrons). The experiments show that 3D printing is a useful tool for modulating high energy electron beams, for example, in the field of medical physics..Примечания о наличии в документе библиографии/указателя: [References: 26 tit.].Тематика: электронный ресурс | труды учёных ТПУ | accelerator applications | beam dynamics | приложения | лучевая терапия Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 26 tit.]

In this research, we study how the thickness of a 3D-printed collimator affects high-energy electron scattering. As part of this work, an ABS plastic absorber was produced by fused deposition modeling. Dose distributions at the boundary of the plastic absorber were experimentally observed for 6, 12, and 20 MeV electron beams. For plastic absorber thicknesses of up to 3 cm, dose "hot spots" are observed at the boundary between the primary beam and the beam that has passed through the absorber for 12 and 20 MeV electrons. However, no additional scattering is observed at the absorber edges for the thicknesses of plastic collimators above the minimum thickness providing the total absorption of electron beams (=4 cm for 6 MeV electrons, =8 cm for 12 MeV electrons, and =10 cm for 20 MeV electrons). The experiments show that 3D printing is a useful tool for modulating high energy electron beams, for example, in the field of medical physics.

Для данного заглавия нет комментариев.

оставить комментарий.