ANN Assisted-IoT Enabled COVID-19 Patient Monitoring / G. Ratkhor, S. Garg, Zh. Kaddum [et al.]

Уровень набора: IEEE AccessАльтернативный автор-лицо: Ratkhor, G., Gitandzhali;Garg, S., Sakhil;Kaddum, Zh., Zhorzh;Vu Yuley;Dzhayakodi (Jayakody) Arachshiladzh, D. N. K., specialist in the field of electronics, Professor of Tomsk Polytechnic University, 1983-, Dushanta Nalin Kumara;Alamri, A. M., Atif MКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа информационных технологий и робототехники, Научно-образовательный центр "Автоматизация и информационные технологии"Язык: английский.Страна: .Резюме или реферат: COVID-19 is an extremely dangerous disease because of its highly infectious nature. In order to provide a quick and immediate identification of infection, a proper and immediate clinical support is needed. Researchers have proposed various Machine Learning and smart IoT based schemes for categorizing the COVID-19 patients. Artificial Neural Networks (ANN) that are inspired by the biological concept of neurons are generally used in various applications including healthcare systems. The ANN scheme provides a viable solution in the decision making process for managing the healthcare information. This manuscript endeavours to illustrate the applicability and suitability of ANN by categorizing the status of COVID-19 patients’ health into infected (IN), uninfected (UI), exposed (EP) and susceptible (ST). In order to do so, Bayesian and back propagation algorithms have been used to generate the results. Further, viterbi algorithm is used to improve the accuracy of the proposed system. The proposed mechanism is validated over various accuracy and classification parameters against conventional Random Tree (RT), Fuzzy C Means (FCM) and REPTree (RPT) methods..Примечания о наличии в документе библиографии/указателя: [References: 42 tit.].Тематика: труды учёных ТПУ | электронный ресурс | COVID-19 | medical services | artificial intelligence | viruses (medical) | diseases | pandemics | viterbi algorithm | медицинские услуги | искусственный интеллект | вирусы | болезни | пандемии Ресурсы он-лайн:Щелкните здесь для доступа в онлайн | Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 42 tit.]

COVID-19 is an extremely dangerous disease because of its highly infectious nature. In order to provide a quick and immediate identification of infection, a proper and immediate clinical support is needed. Researchers have proposed various Machine Learning and smart IoT based schemes for categorizing the COVID-19 patients. Artificial Neural Networks (ANN) that are inspired by the biological concept of neurons are generally used in various applications including healthcare systems. The ANN scheme provides a viable solution in the decision making process for managing the healthcare information. This manuscript endeavours to illustrate the applicability and suitability of ANN by categorizing the status of COVID-19 patients’ health into infected (IN), uninfected (UI), exposed (EP) and susceptible (ST). In order to do so, Bayesian and back propagation algorithms have been used to generate the results. Further, viterbi algorithm is used to improve the accuracy of the proposed system. The proposed mechanism is validated over various accuracy and classification parameters against conventional Random Tree (RT), Fuzzy C Means (FCM) and REPTree (RPT) methods.

Для данного заглавия нет комментариев.

оставить комментарий.