Variable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies / A. A. Svetashkov, N. A. Kupriyanov, M. S. Pavlov, A. A. Vakurov

Уровень набора: Acta MechanicaАльтернативный автор-лицо: Svetashkov, A. A., physicist, Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences, 1943-, Aleksandr Andreevich;Kupriyanov, N. A., specialist in the field of materials science, Associate Professor of Tomsk Polytechnic University, candidate of technical sciences, 1951-, Nikolay Amvrosievich;Pavlov, M. S., physicist, assistant of Tomsk Polytechnic University, 1984-, Mikhail Sergeevich;Vakurov, A. A., Andrey AleksandrovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Школа базовой инженерной подготовки, Отделение общетехнических дисциплин;Национальный исследовательский Томский политехнический университет, Инженерная школа природных ресурсов, Отделение нефтегазового делаЯзык: английский.Серия: Original paperРезюме или реферат: The availability of accurate methods to mathematically model and predict the behavior of viscoelastic structures under mechanical, thermal and other loads remains a critical issue in different fields ranging from construction engineering to aerospace. Methods to calculate elastic structures are well developed; however, considering that viscoelastic properties require significant effort, we have developed and tested a new analytical method to solve boundary problems of isotropic linearly viscoelastic bodies. According to the proposed algorithm, to find the solution for a linear viscoelasticity boundary problem, we must replace the elastic constants with some functions of time and then numerically or analytically calculate the stress-strain state of the structure at any moment of its loading history. As a result of the theoretical justification of the proposed method, carried out in three independent ways, identical expressions of effective modules are obtained. The obtained results, as well as testing on solutions to several problems, allow us to conclude that the new analytical method is applicable to the calculation of the stress-strain state of viscoelastic bodies..Примечания о наличии в документе библиографии/указателя: [References: 36 tit.].Аудитория: .Тематика: электронный ресурс | труды учёных ТПУ | разделение | краевые задачи | вязкоупругие тела | математическое моделирование | напряженно-деформированные состояния Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 36 tit.]

The availability of accurate methods to mathematically model and predict the behavior of viscoelastic structures under mechanical, thermal and other loads remains a critical issue in different fields ranging from construction engineering to aerospace. Methods to calculate elastic structures are well developed; however, considering that viscoelastic properties require significant effort, we have developed and tested a new analytical method to solve boundary problems of isotropic linearly viscoelastic bodies. According to the proposed algorithm, to find the solution for a linear viscoelasticity boundary problem, we must replace the elastic constants with some functions of time and then numerically or analytically calculate the stress-strain state of the structure at any moment of its loading history. As a result of the theoretical justification of the proposed method, carried out in three independent ways, identical expressions of effective modules are obtained. The obtained results, as well as testing on solutions to several problems, allow us to conclude that the new analytical method is applicable to the calculation of the stress-strain state of viscoelastic bodies.

Для данного заглавия нет комментариев.

оставить комментарий.