Specular-reflection photonic hook generation under oblique illumination of a super-contrast dielectric microparticle / Yu. E. Geynts, A. A. Zemlyanov, I. V. Minin, O. V. Minin

Уровень набора: Journal of OpticsАльтернативный автор-лицо: Geynts, Yu. E., Yury Elmarovich;Zemlyanov, A. A., Aleksandr Anatoljevich;Minin, I. V., physicist, Senior researcher of Tomsk Polytechnic University, Doctor of technical sciences, 1960-, Igor Vladilenovich;Minin, O. V., physicist, professor of Tomsk Polytechnic University, Doctor of technical sciences, 1960-, Oleg VladilenovichКоллективный автор (вторичный): Национальный исследовательский Томский политехнический университет, Инженерная школа неразрушающего контроля и безопасности, Отделение электронной инженерииЯзык: английский.Страна: .Резюме или реферат: The possibility of overcoming the critical condition for localized photonic nanojet (PNJ) upon plane optical wave diffraction at mesoscale dielectric particle, which is commonly known as 'the refractive index contrast is less than two', was recently reported in our works. To this end, the novel geometrical scheme of PNJ generation in 'reflection mode' was proposed recently based on a super-contrast microparticle placed near a flat mirror. In this paper, through the numerical FDTD calculations of optical near-field structure of 2D and 3D dielectric microparticles (cylinder, sphere) we extend our considerations to the case of oblique particle-at-mirror illumination and present new physical phenomena arising in the considered photonic geometry. Specifically, we report on the generation of a quasi-retrograde PNJ which follows the inclined particle illumination and propose a new principle for obtaining a curvilinear photonic flux in the form of a 'specular-reflection photonic hook' (s-Hook) in the opposite to the illuminated wavevector direction. Two different regimes of s-Hook formation are analyzed by changing the direction of light incidence on a dielectric particle and by flat mirror inclination. Self-bending property of PNJ at oblique illumination is investigated The possibility of overcoming the critical condition for localized photonic nanojet (PNJ) upon plane optical wave diffraction at mesoscale dielectric particle, which is commonly known as 'the refractive index contrast is less than two', was recently reported in our works.; To this end, the novel geometrical scheme of PNJ generation in 'reflection mode' was proposed recently based on a super-contrast microparticle placed near a flat mirror. In this paper, through the numerical FDTD calculations of optical near-field structure of 2D and 3D dielectric microparticles (cylinder, sphere) we extend our considerations to the case of oblique particle-at-mirror illumination and present new physical phenomena arising in the considered photonic geometry. Specifically, we report on the generation of a quasi-retrograde PNJ which follows the inclined particle illumination and propose a new principle for obtaining a curvilinear photonic flux in the form of a 'specular-reflection photonic hook' (s-Hook) in the opposite to the illuminated wavevector direction. Two different regimes of s-Hook formation are analyzed by changing the direction of light incidence on a dielectric particle and by flat mirror inclination. Self-bending property of PNJ at oblique illumination is investigated..Примечания о наличии в документе библиографии/указателя: [References: 32 tit.].Тематика: электронный ресурс | труды учёных ТПУ | photonic hook | curvilinear field localization | retrograde reflection | structured light | super-contrast microparticle | освещение | микрочастицы | оптические волны | дифракция Ресурсы он-лайн:Щелкните здесь для доступа в онлайн
Тэги из этой библиотеки: Нет тэгов из этой библиотеки для этого заглавия. Авторизуйтесь, чтобы добавить теги.
Оценка
    Средний рейтинг: 0.0 (0 голосов)
Нет реальных экземпляров для этой записи

Title screen

[References: 32 tit.]

The possibility of overcoming the critical condition for localized photonic nanojet (PNJ) upon plane optical wave diffraction at mesoscale dielectric particle, which is commonly known as 'the refractive index contrast is less than two', was recently reported in our works. To this end, the novel geometrical scheme of PNJ generation in 'reflection mode' was proposed recently based on a super-contrast microparticle placed near a flat mirror. In this paper, through the numerical FDTD calculations of optical near-field structure of 2D and 3D dielectric microparticles (cylinder, sphere) we extend our considerations to the case of oblique particle-at-mirror illumination and present new physical phenomena arising in the considered photonic geometry. Specifically, we report on the generation of a quasi-retrograde PNJ which follows the inclined particle illumination and propose a new principle for obtaining a curvilinear photonic flux in the form of a 'specular-reflection photonic hook' (s-Hook) in the opposite to the illuminated wavevector direction. Two different regimes of s-Hook formation are analyzed by changing the direction of light incidence on a dielectric particle and by flat mirror inclination. Self-bending property of PNJ at oblique illumination is investigated The possibility of overcoming the critical condition for localized photonic nanojet (PNJ) upon plane optical wave diffraction at mesoscale dielectric particle, which is commonly known as 'the refractive index contrast is less than two', was recently reported in our works.

To this end, the novel geometrical scheme of PNJ generation in 'reflection mode' was proposed recently based on a super-contrast microparticle placed near a flat mirror. In this paper, through the numerical FDTD calculations of optical near-field structure of 2D and 3D dielectric microparticles (cylinder, sphere) we extend our considerations to the case of oblique particle-at-mirror illumination and present new physical phenomena arising in the considered photonic geometry. Specifically, we report on the generation of a quasi-retrograde PNJ which follows the inclined particle illumination and propose a new principle for obtaining a curvilinear photonic flux in the form of a 'specular-reflection photonic hook' (s-Hook) in the opposite to the illuminated wavevector direction. Two different regimes of s-Hook formation are analyzed by changing the direction of light incidence on a dielectric particle and by flat mirror inclination. Self-bending property of PNJ at oblique illumination is investigated.

Для данного заглавия нет комментариев.

оставить комментарий.